
J Supercomput (2016) 72:232–246
DOI 10.1007/s11227-015-1559-9

Anti-debugging scheme for protecting mobile apps
on android platform

Haehyun Cho1 · Jongsu Lim1 · Hyunki Kim1 ·
Jeong Hyun Yi1

Published online: 6 November 2015
© Springer Science+Business Media New York 2015

Abstract The Android application package file, APK file, can be easily decompiled
using Android reverse engineering tools. Thus, general apps can be easily transformed
into malicious application through reverse engineering and analysis. These repacked
apps could be uploaded in general android app market called Google Play Store and
redistributed. To prevent theses malicious behaviors such as malicious code injection
or code falsifications, many techniques and tools were developed. However, these
techniques also can be analyzed using debuggers. Also, analyzed apps can be tampered
easily. For example, when applying anti-analysis techniques to android apps using
Dexprotector which is commercial tool for protecting android app, it can be seen that
these techniques can also be analyzed using debugger. In this paper, to protect the
android app from the attack using debugger, we propose anti-debugging techniques
for native code debugging and managed code debugging of android apps.

Keywords Anti-reversing · Android APP protection · Detecting emulator ·
Anti-debugging

B Jeong Hyun Yi
jhyi@ssu.ac.kr

Haehyun Cho
haehyuncho@gmail.com

Jongsu Lim
jongsu253@gmail.com

Hyunki Kim
hitechnet92@gmail.com

1 School of Computer Science and Engineering, Soongsil University, Seoul 156-743, Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1559-9&domain=pdf

Anti-debugging scheme for protecting mobile apps on. . . 233

1 Introduction

With the development of the smartphone market, the smartphone app market has also
been marked with huge growth. However, the increased use of smart phone apps has
also seen an exponential increase in malicious activity targeting smartphone apps. The
result has been a myriad of things such as the spread of malicious code, leakage of
personal information, heavy financial loss, etc.

The list of these security risks for Android apps are never ending, because of
Android app’s structural characteristics [7,14]. Android apps are fundamentally built
with Java and formed in the APK (Android application package) file structure which
is a self-signed app. The binary compiled with Java can be easily restored into the
original source or similar to it, with a Java decompiler. Android apps are characterized
by the easily decompiled Java language and by the easily extracted apps’ APK files
installed on an Android phone. Because of these characteristics, an attacker can easily
extract the APKfile of a normal app and inject an attack code so that, after repackaging
it, the app is disguised as a brand new app and distributed. If a user installs and runs the
tampered app, thinking it as a normal app, the malicious codes planted by the attacker
can be executed.

Because Android apps are easy to reverse engineering and analyze, it can be easily
tampered into malicious apps. Therefore, many methods to prevent tampering has
been proposed. Among the proposed methods are codes obfuscation, execution code
compression, control flow obfuscation, etc., [16,18]. However, there is the caveat that
even apps that apply these methods still remain vulnerable to analysis with the use
of a debugger. Therefore, in this paper targeted debugger is the IDA [11] which is
the famous commercial debugger, we analyze the way the debugger operates for both
native and managed code. In addition, using the results of the analysis, explain the
methods of thwarting the debugger.

2 Backgrounds

In this section, we will examine how the debuggers used to analyze Android apps
operate.

2.1 Analysis of the native code debugger operational method

Figure 1 shows the process of analyzing the Android app Native code. Remote debug-
ging support tool must be running inside the Android device, because debugging is
done by communicating with the tool. To run the remote debugging support tool in
the Android device, one needs to use Android Debug Bridge (ADB) [1], a tool that
enables the host computer to communicate with the Android device. ADB communi-
cates with Android Debug Bridge Daemon (ADBD) which operates within the device
to provide services such as debugging information, and remote shell. But to run the
remote debugging support tool within the Android device, remote shell needs to be
used. When running the remote debugging support tool using remote shell, the remote
debugging support tool must be run with root authority. This is because in the case of

123

234 H. Cho et al.

Fig. 1 The execution process of debugger and remote debugging support tools

Fig. 2 The IDA and android_server communication process

Native debugging, the target is a process; therefore, the debugger’s authority must be
higher than the debuggee process’s authority.

Figure 2 is the communication process of using debugger IDA to analyze the app’s
native code and the android server which is a remote debugging support tool, to
change the process into a debuggee process. After IDA and android_server establish
TCP connection (three-way handshake), verify the version information. In addition,
IDA sends android_server signals occurred by the debuggee process which are needed
to be verified by the debugger and receives a list of processes available for debugging
from the android_server. Also, if the PID of the process targeted for debugging is
sent to android_server, android_server will set up the process with the corresponding
PID into a debugging process and send the binary code and maps information of the
corresponding process to IDA.

2.2 Analysis of the JDWP debugger operational method

Dalvik virtual machine translates and executes the app’s Dalvik byte code included
in Dalvik Executable (DEX) file [5] which is an Android app execution file

123

Anti-debugging scheme for protecting mobile apps on. . . 235

Fig. 3 The operational process of the JDWP debugger

format. The objective of Dalvik virtual machine being to run Android apps, it
provides features related to execution such as interpreter and garbage collector
[3,10]. Also, debugging feature is related to app execution, it is supported by
the Dalvik virtual machine. Debugging of an Android app, as shown in Fig. 3,
is done in a remote debugging environment. Dalvik virtual machine and debug-
ger cannot communicate directly with each other but must communicate using
ADB.

JDWP, an abbreviation for Java Debug Wire Protocol [12] and used during the
ADB communication process, is a designated protocol for communication between
the debugger and virtual machine in Java Platform Debug Architecture (JPDA) [13].
It is normally used in an environment for debugging Java applications but, because
Dalvik virtual machine also supports JDWP, it is used in the communication
process.

To deal with JDWP, Dalvik virtual machine provides a JDWP thread [19]. When
the JDWP debugger sends a debugging command through JDWP protocol, the JDWP
thread interprets JDWP protocol and executes the handler corresponding to the
cmdSet and cmd. Android app debugging takes place following a process of the
handler executing the debugging function and sending the executed results back to the
JDWP thread through JDWP protocol.

The DvmGlobals structure was defined for the debugger to easily check the condi-
tion of the virtual machine, but the DvmGlobals structure stores not only information
on the status of the virtual machine but also information produced by the debugger.
The DvmGlobals structure is generated into a global variable gDvm, and the handler
executed by the JDWP thread also verifies or alters the gDvm value to have debugging
proceed.

3 Anti-debugging

In this section, based on the debugging process analyzed in the above Sect. 2, we
explain debugger prevention techniques [4,9,17].

123

236 H. Cho et al.

3.1 Native code debugger prevention method

Debugger detection method through hash value comparison If the debugger put into
place a break pointer in the debuggee process, the code of the debuggee process that
includes a break pointer will be altered. But when the code section of the procedure
is running normally, due to it not being an altered section, the same hash value will
always be generated when you find the hash value for the code section. However,
because code is altered if you implement a break pointer, a different hash value is
generated when finding the hash value using the same hash algorithm as the situation
mentioned before. As a result, debuggers can be detected by checking to see if the
hash value generated by the code section differs from the existing hash value.

Debugger detectionmethodusing timing check The timing checkmethod is a detection
method based on program runtime. It is common for code to be executed in a single
step method when executing code in the debugger but, with the single step method, a
wait time develops. By perceiving this wait time, we can detect the debugger. However,
because code is not always executed in a single step method when code is executed in
the debugger, this method must be used only after anticipating the wait time and the
location conducive for executing code to use this method.

Debugger detectionmethod using signals All signals of themain process in debugging
are first sent to the debugger, and transmission of the main debugging process signal
is confirmed in the debugger. Because the process is terminated when a signal such
as SIGKILL is transmitted to the process, signals such as SIGKILL will not be
sent to the process while debugging. Thus, after generating signals such as SIGINT
and confirming their transmission to the app, we can detect whether the debugging is
operating or not.

Debugger detection method using TracerPID If a process is attached to the debug-
ger process, the TracerPID status value is not 0, but the PID value of the debugger
process which is attached to it. The TracerPID status value can be read from the
/proc/PID/Status file; therefore, the debugger can be detected by determining
whether the TracerPID status value in /proc/PID/status file is zero or not.

3.2 JDWP debugger prevention method

Dalvik virtual machine has been optimized to generate multiple virtual machine
instances with minimal memory. The reasons for generating multiple instances are
for it providing an advantage in protection and greater efficiency in execution [15].
In the case of the current standard Java runtime system, when a crash occurs in the
virtual machine, either due to malicious intent or due to error, all applications run by
the virtual machine are affected. However, for the Dalvik virtual machine, only the
applications run by the virtual machine that had a crash are affected. Additionally, in
the case of Dalvik virtual machine, it only needs to deal with the information related
to the application which increases the efficiency in execution (Figs. 4, 5, 6).

123

Anti-debugging scheme for protecting mobile apps on. . . 237

Fig. 4 User library can access libdvm.so

Fig. 5 The value that stores
information on the debugger
status

Fig. 6 BreakpointSet structure

Because of the abovementioned characteristics, the Dalvik virtual machine instance
is included in library format for each Android app process. Because the Dalvik virtual
machine instance is generated by anAndroid app process, even the library codewritten
with NDK by the user can easily access the memory area used by the Dalvik virtual
machine instance. This is because the two libraries both exist in the memory area of
the same process.

The Dalvik virtual machine instance includes gDvm, which was explained while
analyzing the debugging process of JDWP debugger, and, by referring to and altering
the status value stored in the gDvm, JDWP debugger can be prevented [2]. So, in this
section wewill explain the method of preventing the debugger by accessing the Dalvik
virtual machine instance included in the Android app process.

Detection method using the debugger status value The debuggerConnected
member variable and debuggerActive member variable store the debugger exe-
cution status in the DvmGlobals structure. If the debugger is connected to the JDWP
thread, the debuggerConnected variable is set to 1, and if the debugging function

123

238 H. Cho et al.

is running, the debuggerActive variable is set to 1. By checking if the variables
for debuggerConnected and debuggerActive are set to 1, we can determine
whether the debugger is connected or running.

Detection method using the number of breakpoints To control the execution flow, a
debugger provides the function of setting a breakpoint in the execution code.

Information regarding the set breakpoint is stored in the BreakpointSet struc-
ture. The BreakpointSet structure stores the number of breakpoints set, the
address of the locations where the breakpoints have been set, the original execution
code, etc.

The number of set breakpoints is incorporated in the count member of the
BreakpointSet structure and, by checking the count value, the debugger can be
detected.

Tamper detecting using the breakpointset structure The BreakpointSet structure
is dynamically allocated in the Dalvik virtual machine. Thus, since it is access-
ing a structure member using the pointer, if the NULL pointer is allocated to
BreakpointSet, the process can be terminated due to erroneous memory access
when setting the breakpoint, and the debugger can be thwarted.

4 Reverse engineering using debugger

In this section, we apply prevention methods on Android app to deal with reverse
engineering using Dexprotector [6], a tool that applies prevention methods, and refer
to the necessity of debugger prevention method, through reverse engineering using
debugger.

DexProtector is a tool used to prevent Android reverse engineering. The reverse
engineering prevention method used by DexProtector includes using dynamic key,
automatic application of the tamper detection function when applying an encryption
method, concealment of the tamper detection routine, concealment of the obfuscation
routine, concealment of the encrypted data, running a tamper detection routine while
the app is loading, etc. DexProtector’s methods are applied as shown in Fig. 7.

Fig. 7 The process of applying DexProtector to an android app

123

Anti-debugging scheme for protecting mobile apps on. . . 239

Fig. 8 The running log of an app that applies DexProtector

Fig. 9 The process of reverse engineering an app that applies DexProtector

Figure 8, showing the log that results from running an app with DexProtector, is the
log that results when loading the file containing the Dalvik byte code onto memory in
the Dalvik virtual machine. Thus, we can see that the new.apk file that contains the
Dalvik byte code is loaded twice onto memory and then used. However, because the
new.apk file is deleted after it is used, we cannot confirm the code.

The way to acquire a new.apk file is to extract it before it gets deleted. Attempts
at repackaging proved that one cannot acquire the new.apk file when modifying the
original app when the tamper detection routine is applied. Also, in the case of the
JDWP debugger, because the JDWP debugger prevention method is applied, it cannot
be used. While debugging is possible with a native debugger, due to the differences in
the execution of debuggers, the new.apk file cannot be extracted.

The reason for this is because DexProtector uses application class which bypasses
the functions applied for preventing reverse engineering and runs the original app.
Application class is the very first class called when the Android app first opens. Resul-
tantly, the native debugger that attempts debugging an app that is running cannot debug
the application class.

Figure 9 is the process of acquiring the new.apk from an app that uses class
encryption, one of the app protection functions of DexProtector.

Characteristic of the Android platform, Android apps run by forking the Zygote
process [8]. The Zygote process is a process that loads the class, resource, and library
used in the app beforehand to have Android apps run faster. Therefore, Zygote process
is forked and only replaces the process image, when a Android app runs. This char-
acteristic is used to debug the Zygote process, when the Android app process forks,
debugging is possible.

123

240 H. Cho et al.

Fig. 10 The restoration process of the original code of an app that applies DexProtector

By loading the file that contains Dalvik byte code after the Android app process
forks, the process image is replaced. After the image is replaced, the first thing that
is executed is application class. As a result, the execution process of the application
class can be analyzed.

In the application class, you can see that the new.apk file is used by loading it
twice on memory However, to load the file containing Dalvik byte code onto memory,
youmust calldvmJarFileOpen, a function provided by theDalvik virtualmachine.
Thus, by setting a breakpoint in the dvmJarFileOpen function, the new.apk file,
generated before the dvmJarFileOpen function is executed, can be extracted

Figure 10 shows the restoration process of the original code discovered through
reverse engineering of an app that applies DexProtector. First, the app with Dex-
Protector combines the byte codes to create the decryptor into a new.apk file. In
addition, the generated decryptor is loaded onto memory and decrypts the encrypted
original code classes.dex stored in the asset folder. The decrypted original code
is generated into a new.apk file. Also, by loading the decrypted original code into
the memory, the original app is run and the recently created new.apk file is deleted.

5 Proposed scheme

5.1 Preemptive virtual connection and attachment

A characteristic of the debugging process of the native code is that the program that
executes the actual debugging function and the program that provides the interface
concerning debugging are divided. Therefore, the two programs need to communicate
with each other, and a break in communication disallows debugging from proceeding
(Figs. 11, 12).

Incorporating the information mentioned above, we attempted to establish a virtual
connection utilizing the protocol used in communication between the remote debug-
ging support tool android_server and the user interface tool IDA. After establishing
TCP connection between the Android app and android_server, by sending the version
information message (0x00000003030f 0b04) from android_server and send-
ing the replymessage (0x0000000200 0100), the virtual connection status of the
Android app and android_server can be maintained. Because of this, the actual IDA
cannot communicate with android_server and, as a result, the debugging process can-
not be carried out. Thus, by virtually connecting the Android app with android_server,
the native debugger can be prevented.

123

Anti-debugging scheme for protecting mobile apps on. . . 241

Fig. 11 Prevention of IDA connection using virtual connection

Fig. 12 The unusual situation that can arise during the virtual connection

However, the method that virtually connects the Android app with android_server
is only a temporary measure. If the IDA and android_server are connected first,
conversely the Android app cannot communicate with android_server. Also, even
if the Android app connected first with android_server, this cannot prevent debug-
ging attempts through communication with a different android_server. The reason
being that, in the case of virtual connection, it establishes communication between the
Android app and android_server process for the purpose of preventing communication
between the android_server process and IDA.

Consequently, to protect apps from the above mentioned method, we induce the
android_server connected to theAndroid app to debug theAndroid app. In otherwords,
as in Fig. 13, the Android app sends the debugging command to android_server, and
android_server becomes a process that debugs the Android app. Because the Android
app and android_server are connected, IDA cannot connect with android_server. Also,
because the android_server connected to the Android app is debugging the Android
app, even with the use of a different android_server process, the Android app cannot
be debugged.

Nevertheless, the method used above, also, cannot be used if an android_ server
connected with IDA is debugging the Android app. This is the reason why the method
proposed in this paper is like Fig. 14.

123

242 H. Cho et al.

Fig. 13 Debugger prevention through preemptive attach

Fig. 14 Debugging prevention through preemptive attach

For special purpose programs like the debugger in Android to be executed within
the Android device, as characteristic of the Android environment, the shell process
provided by the abdb process is used. As a result, in the case that android_server
is executed, android_server is the child process of shell and shell process becomes
the child process of abdb. Therefore, through the termination of shell process or abdb
process, android_serverwill be terminated. In addition, for android_server to debug the
process, it must be executed with root authority. The su command that changes UID is
not provided in the typical Android environment, but in the Android environment that
runs android_server, the su command has to be provided. The su command provided
in this environment can acquire root authority just by calling it. Thus, it is possible for
an Android app to acquire root authority.

Using these characteristics, even if an android_server connected with IDA debugs
the Android app, the Android app can acquire root authority with the su command and

123

Anti-debugging scheme for protecting mobile apps on. . . 243

terminate the abdb process or shell process to terminate the android_server connected
with IDA. Using this process, we gain an opportunity for the android_server executed
by the Android app to debug the Android app.

As a result, to protect the native code from debuggers, we terminate the adbd
process to kill the shell and the shell’s child process which is the child processes of
adbd process. After, executing the android_server included in the app and connecting
it with the app, the android_server is used for debugging.

5.2 Hooking communication function

The detection methods used in the existing JDWP debugging prevention method have
the drawback that they must be executed while the debugger is connected to function.
Furthermore, because the prevention methods facilitate access for the section that
accesses memory with the NULL pointer to prevent errors induced by faulty memory
access, an error message for Segmentation Fault is sent to the user.

Therefore, in this section we propose a method that, by hooking the function called
to process the message that JDWP thread sends to JDWP protocol, terminates the
Android app process when the JDWP thread is run (Figs. 15, 16).

The JDWP thread, to process communication with the debugger, uses twomethods:
ADB communication method and socket communication method. These two commu-
nication methods share the same procedures that facilitate communication such as
connection with the debugger, data transmission/reception, transmitted/received mes-
sage translation, etc. However, because the two methods differ in the way they process
the procedures, an interface for the function that processes the communication proce-
dure is provided using JdwpTransport structure.

While the JdwpTransport structure provides a function pointer for the function
that processes the communication procedure, in the JDWP thread, when the ADB
communication method is used, the designated function to process the ADB com-
munication method is registered in the JdwpTransport structure, and when the
socket communication method is used, the function defined for processing the socket

Fig. 15 JdwpTransport structure

123

244 H. Cho et al.

Fig. 16 JdwpTransport structure hooking process

method is registered in the JdwpTransport structure. Furthermore, to process the
communication procedure, the JDWP thread calls the function pointer registered in
the JdwpTransport structure.

Because the explained JdwpTransport structure uses the function pointer, a
problem arises where the user-defined function is called when the JDWP thread
processes the communication procedure if the user-defined function is registered in
the JdwpTransport structure.

If, using the fact that the user-defined function can be registered in the
JdwpTransport structure, a function that includes a code that terminates process
is registered in the JdwpTransport structure, when the JDWP thread processes
communication, instead of the function to process the existing communication, the
user-defined function is called. Thus, if the user-defined function registered in the
JdwpTransport structure accepts function pointer, during the procedure where
the JDWP thread accepts from the debugger, the function registered by the user is
called. At this time, if a termination code is included in the function registered by the
user, the Android app will be terminated.

The method of registering in the JdwpTransport structure the function con-
taining the termination code has the benefit that, unlike the currently used methods,
it runs a normal termination code to terminate the process so that an error message is
not sent to the user.

6 Experimental result

These are the test results from building an application program that applies the pro-
posed method and running tests on it. Also, these experiments are conducted with IDA
Pro 6.7.

Figure 17 is an attempt to, after running an application program that applies the
proposed Preemptive Virtual Connection method, connect with the remote debugging
support tool using IDA as the user interface tool. We can see that a warning message
appeared.

123

Anti-debugging scheme for protecting mobile apps on. . . 245

Fig. 17 Result from proposed IDA attachment prevention scheme

Fig. 18 Result from proposed hooking communication function scheme

Figure 18 is the resulting log of an attempt, after running the application program
that applies the proposed Hooking Communication Function method, to establish
JDWP debugging connecting using IDA as the user interface tool. I’m calling
the exit(0) is a message that alerts that the hooked function has been called. We
can see that no error messages have appeared and that the program has terminated
normally.

7 Conclusion

In this paper, we proposed debugging prevention methods to prevent reverse
engineering on android apps. To prevent Native debugger, we connect remote debug-
ging support tool with the target app, then the tool preemptively connects with
the target app, therefore, preventing the native debugger by occupying the tar-
get app first. Through experiments, we verified the feasibility of the proposed
scheme.

While analyzing the debugging process of the Dalvik virtual machine, we realized
that the function pointer that has been exposed to the global variable is used in the

123

246 H. Cho et al.

debugging process. Thus, by having the method proposed to prevent against the JDWP
debugger hook the function pointer to cause the application program to be terminated
if debugging occurs, we ensured the validity of the method we proposed.

Acknowledgments This research was supported by Global Research Laboratory (GRL) program through
the National Research Foundation of Korea (NRF-2014K1A1A2043029).

References

1. Android debug bridge. http://developer.android.com/tools/help/adb.html
2. Android reverse engineering and defenses. https://bluebox.com/technical/bluebox-berlinsides-

presentationbluebox-berlinsides-presentation/
3. Bornstein D (2008) Dalvik vm internals. In: Google I/O developer conference, vol 23, pp 17–30
4. Cesare S (1999) Linux anti-debugging techniques (fooling the debugger). Security focus
5. Dex file. https://source.android.com/devices/tech/dalvik/dex-format.html
6. Dexprotector by licel. http://dexprotector.com/
7. Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A study of android application security. In:

USENIX security symposium, vol 2, p 2
8. Fengsheng Y (2011) Android internals: system
9. Gagnon MN, Taylor S, Ghosh AK (2007) Software protection through anti-debugging. IEEE Secur

Priv 5(3):82–84
10. Huang J (2012) Understanding the dalvik virtual machine. Google Technology User Groups, Taipei
11. Ida pro disassembler and debugger. https://www.hex-rays.com/products/ida/. Accessed 26 Mar 2015
12. Java debug wire protocol. http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/jdwp-spec.

html. Accessed 25 Mar 2015
13. Java platform debugger architecture. http://docs.oracle.com/javase/7/docs/technotes/guides/jpda.

Accessed 25 Mar 2015
14. Jung JH, Kim JY, Lee HC, Yi JH (2013) Repackaging attack on android banking applications and its

countermeasures. Wirel Pers Commun 73(4):1421–1437
15. Khan S, Khan S, Banuri H, Nauman M, Alam M (2009) Analysis of dalvik virtual machine and

class path library. Tech. rep. Security Engineering Research Group, Institute of Management Sciences,
Peshawar

16. Lee C, Jeong YS, Cho SJ (2013) Amethod to protect android applications against reverse engineering.
J Secur Eng 10(1):41–50

17. Schallner M (2006) Beginners guide to basic linux anti anti debugging techniques. Code-Break Mag,
Secur Anti-Secur Attack Def 1(2):3–10

18. SchulzP (2012)Codeprotection in android.RheinischeFriedrich-Wilhelms-UniversitgtBonn, Institute
of Computer Science, Bonn

19. Selvakumar G (2012) Constructing an environment and providing a performance assessment of
androids dalvik virtual machine on x86 and arm. Ph.D. thesis, University of Kansas

123

http://developer.android.com/tools/help/adb.html
https://bluebox.com/technical/bluebox-berlinsides-presentationbluebox-berlinsides-presentation/
https://bluebox.com/technical/bluebox-berlinsides-presentationbluebox-berlinsides-presentation/
https://source.android.com/devices/tech/dalvik/dex-format.html
http://dexprotector.com/
https://www.hex-rays.com/products/ida/
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/jdwp-spec.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/jdwp-spec.html
http://docs.oracle.com/javase/7/docs/technotes/ guides/jpda

	Anti-debugging scheme for protecting mobile apps on android platform
	Abstract
	1 Introduction
	2 Backgrounds
	2.1 Analysis of the native code debugger operational method
	2.2 Analysis of the JDWP debugger operational method

	3 Anti-debugging
	3.1 Native code debugger prevention method
	3.2 JDWP debugger prevention method

	4 Reverse engineering using debugger
	5 Proposed scheme
	5.1 Preemptive virtual connection and attachment
	5.2 Hooking communication function

	6 Experimental result
	7 Conclusion
	Acknowledgments
	References

