
J Supercomput (2016) 72:3629–3645
DOI 10.1007/s11227-016-1763-2

Mobile application tamper detection scheme using
dynamic code injection against repackaging attacks

Haehyun Cho1 · Jiwoong Bang1 · Myeongju Ji1 ·
Jeong Hyun Yi1

Published online: 2 June 2016
© Springer Science+Business Media New York 2016

Abstract TheAndroid platform,with a largemarket share from its inclusive openness,
faces a big problem with repackaging attacks, because reverse engineering is made
easy due to the signature method that allows self-sign and also due to application
structure. A repackaging attack is a method of attack, where an attacker with mali-
cious intent alters an application distributed on the market to then redistribute it. The
attacker injects into the original application illegal advertisement or malicious code
that extracts personal information, and then redistributes the app. To protect against
such repackaging attacks, obfuscation methods and tampering detection schemes to
prevent application analysis are being developed and applied to Android applications.
However, through dynamic analysis, protection methods at the managed code can be
rendered ineffective, and there is a need for a protection method that will address this.
In this paper, we show that, using Dalvik monitor, protection methods at the managed
code level can be dynamically analyzed. In addition, to prevent a tampered application
from running, we propose a tampering detection scheme that uses a dynamic attes-
tation platform. It consist of two phases; (1) detection code injection: inject tamper
detecting code into an application and (2) code attestation: attest the injected code
on the platform. The proposed scheme first uses the tamper detection method at the

B Jeong Hyun Yi
jhyi@ssu.ac.kr

Haehyun Cho
haehyuncho@gmail.com

Jiwoong Bang
jiwoongbang@gmail.com

Myeongju Ji
wlaudwn007@gmail.com

1 School of Computer Science and Engineering, Soongsil University, 156-743 Seoul, Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1763-2&domain=pdf

3630 H. Cho et al.

platform level to inspect execution codes executed in real time and to fundamentally
intercept repackaged applications.

Keywords Android application protection · Tamper detection · Android platform

1 Introduction

Along with the growth of the mobile device market, the mobile application market, as
well, is growing exponentially. Our expectations are that Android will continue to play
an ever greater role in themobile applicationmarket. Evenwith the dawn of the internet
of things (IoT) [1] world in the near future, Android, which is founded on openness,
has the potential to be established as a mainstay of this new development. However,
despite the large market share of Android and its lofty predictions of future use, the
large amount of malware affecting this operating system is increasing sharply [2].

The primary cause of these problems associated with Android protection is repack-
aging attacks where, after the attacker decompiles the APK file, they re-sign the
application with their private key rather than with the developer’s signature before
distributing the application in the market [3,4]. Through repackaging attacks, the
attacker can manipulate the application to inject advertisements or malicious code
that extracts users’ personal information or, when attacking a banking app, can create
a financial accident to direct the money to the attacker’s account when a user uses the
account transfer service on the app [5].

Although obfuscation and tamper detection techniques [6] are being used in
response to the repackaging attacks on Android apps, mostly using obfuscation tech-
niques at the managed code level, this could be revealed and an analysis is possible
practically anytime. Furthermore, on the platform level, when outputting instructions
using the Dalvik virtual machine, the encrypted obfuscation code can easily be ana-
lyzed without secret key information. Thus, there is a need for research leading to
the development of techniques capable of detecting when apps are tampered with,
even under circumstances in which repackaging attacks and Dalvik monitoring could
possibly occur anytime.

This prompted us to find ways to protect an application from repackaging attacks.
This paper proposes a dynamic code attestation scheme with the ability to disable
tampered applications to prevent them from running at the platform level. The proposed
method assumes that the analysis is possible on all, and uses the Dalvik Monitor with
the aim of preventing an attacker from tampering with the app. We have named our
scheme DexAttestor.

The paper is organized as follows. In Sect. 2, we describe the backgrounds on the
code obfuscation and the tamper detection techniques. In Sect. 3, we describe how to
analyze Android applications using Dalvik Monitor. In Sect. 4, we propose the temper
detection scheme based on dynamic code injection. We describe the architecture of
the proposed system in Sect. 5. In Sect. 6, we explain the experimental results of the
proposed scheme using the built prototype. In Sect. 7, we discuss on the advantages
and the disadvantages of the proposed scheme. Finally, we draw the conclusions.

123

Mobile application tamper detection scheme using dynamic code. . . 3631

2 Background

2.1 Code obfuscation

In the case of Android, because applications that permit self-sign are extremely vul-
nerable to repackaging, applying code protection schemes previously mentioned, such
as obfuscation and tampering detection schemes, is vital. Major protection tools for
Android applications are Stringer [7], Allatori [8], DexProtector [9], DexGuard [10],
etc.

Obfuscation is the representative code protection method for protecting algorithms
or important code structures. Its purpose is to prevent analysis by making it difficult to
use reverse engineering [11] to perform analyses. Obfuscation can be classified into
categories, such as layout obfuscation, control flow obfuscation, and data obfusca-
tion [12].

Layout obfuscation is a method that is used to complicate attempts to perform an
analysis by changing identifiers predetermined during application development, such
as class and variable and removing debugging information [13]. If these identifiers
remain unchanged, it is easy to unravel the function and structure of an application
using the identifiers of the class, method, and variables that have been labeled by their
function and use.

Control flow obfuscation, a method that alters the execution flow of an application,
uses complex conditional statements, repetitive statements, dummy code, etc., to dis-
rupt the flow of content to hinder analysis [14]. In addition, JNI could be utilized to
frustrate an attempt to analyze the control flow by invoking the Java function in the
native code.

Data obfuscation protects data by encoding the stored character string using meth-
ods, such as restructuring of the storage type and access method. When static analysis
is used, this scheme will prevent the exact value of each data value from being deter-
mined. Other than the above-mentioned methods, an API concealment obfuscation
scheme, which uses a feature, such as Java reflection [15], also exists. Instead of
directly calling the API used in the program from the attacker, this scheme only calls
information that can be dynamically gathered and, thus, hinders analysis.

Yet, another obfuscation scheme encrypts the entire class much like string encod-
ing [11]. Once the class is encoded and stored in data or in another storage location, the
application performs a decryption routine before being executed. When class encryp-
tion is used, it is not possible to obtain any information regarding the encrypted class
using the static analysis. Alternatively, packers are used to encrypt the entire DEX file
and load it dynamically similar to a class encryption scheme; therefore, this approach
can also be used to prevent an adversary from obtaining bytecode.

2.2 Tamper detection

The tamper detection method, similar to obfuscation, protects program code for the
purpose of preventing tampering attacks. Unlike obfuscation schemes, however, the
tamper detection method can actively respond to tampering attacks on the app. The

123

3632 H. Cho et al.

application itself determines whether the entire application has been tampered with
and, based on the result, decides whether to run. This method is applied by injecting
a routine capable of carrying out tamper detection using methods such as those that
involve inspecting the integrity of the execution file of the intended program. When
an attacker carries out a tampering attack, the above-mentioned routine runs when
the attacked program is executed and detects that the program has been tampered
with.

The tamper detection method typically functions using the hash value of the exe-
cution code, and this value is either stored in the data area within the execution file or
on the server. If it is stored and run on the server when the tamper detection routine
runs, the hash value of the original code is sent from the server. The routine then runs
the received hash value and compares it with the calculated hash value to determine
whether the application has been tampered with. A program in which tampering has
been detected will terminate itself.

Another method functions by receiving a tamper detection code instead of the hash
value from the server [16]. This method prevents analysis by separating the tamper
detection code from the app. If the mobile device sends a verification request, the
tamper detection code is generated in the server and sent to the device, which then
executes the code and calculates the hash value. The detailed structure of the process
is shown in Fig. 1.

Protection of the application with the use of the tamper detection method makes it
essential to protect the tamper detection routine from an attacker to prevent the routine
from being found. If it is possible to easily expose the tamper detection routine, it is not
very difficult for an attacker to bypass the tamper detection method. Thus, rather than

Fig. 1 Example of a tamper detection method

123

Mobile application tamper detection scheme using dynamic code. . . 3633

the tamper detection method being used independently, it is common for the method
to be used along with the various code protection methods introduced earlier.

2.3 Anti-analysis schemes

Several anti-analysis schemes have been developed to counter both static and dynamic
analyzingmethods inAndroid systems. Reverse engineers or hackers attempt to unbox
an APK file statically to acquire byte code or metadata to analyze an application.
In general, manifest file cheating [17], forgery ZIP file encryption [18], or method
concealment [19] schemes could be harnessed to prevent the static analysis. These
schemes prevent adversaries from obtaining the bytecode of an application and other
information by modifying metadata, which only has an impact on static analysis tools,
such as apktool, but do not affect its execution.

Typically, an app is analyzed dynamically using the IDA, GDB, and NetBeans
debuggers. Dynamic analysis using debuggers offers definite advantages compared
with static analysis as mentioned before. However, the use of debuggers to analyze
an application requires root permission, which is a constraint. Thus, an application
for which anti-rooting schemes have been applied cannot be analyzed by debuggers
before these schemes are subverted. Some anti-debugging schemes [20] are designed
to thwart analysis using debuggers.

In addition to the above schemes, emulator detection schemes could be used to
prevent analysis [21], because there are a number of analysis tools based on an emu-
lator. An emulator can be detected using its IMEI number, kernel message, thread
scheduling, and so on. In the case of a QEMU emulator, it has a uniform IMEI number
and kernel log containing the QEMU string. In addition, because its thread scheduling
policy is in numerical order, we can expect a multi-thread program to achieve def-
inite results. Therefore, identifying emulators based on their features can render an
application unanalyzable against such emulator-based analysis tools.

3 Android application analysis

3.1 Analytical methods

Compiled execution codes for Android applications can be separated into managed
code and native code. Managed code is compiled in Java, such that the generated code
is executed not in the CPU but in the Dalvik virtual machine. Native code refers to
code in languages, such as C and C++, i.e., it is machine code that can be recognized
by the CPU. Managed code [22] includes information about the Android API that is
used and, compared to native code, contains a large amount of information needed for
analysis; thus, it becomes the main target for the analysis during a repackaging attack.

Methods for application analysis can be largely grouped into static analysis and
dynamic analysis. The static analysis of an Android application is executed by dis-
assembling the managed code (Smali codes) using tools, such as ApkTool [23] and
BakSmali [24]. Static analysis cannot access the value of encrypted class variables,
such as the code, character, or string and, if the code of an app is partially sepa-

123

3634 H. Cho et al.

rated onto somewhere, such as the server, analysis is impossible. On the other hand,
dynamic analysis can extract important data for analysis purposes that is hard to under-
stand using static analysis, and this form of analysis is easier to implement than static
analysis [25].

3.2 Analysis using the Dalvik Monitor

The Dalvik virtual machine, which executes managed code on the Android platform,
can be modified to create a platform for dynamic analysis as a part of the Android
open source project (AOSP) [26]. The Dalvik Monitor, which processes and outputs
the information needed for analysis based on bytecode, is executed in Dalvik virtual
machine. This enables anyone to conduct a dynamic analysis anytimewithout knowing
the secret key information of an app, using obfuscation techniques based on class
encryption and code concealment, such as string encryption. This is because the code
and data executed in the Dalvik virtual machine can be dynamically monitored in a
form similar to Smali with information, such as string.

As shown in Fig. 2, we can extract all the execution codes running in real time
and observe the registers of the virtual machine and the value of each of the variables
or parameters using the Dalvik Monitor. In addition, the instructions of the encrypted
classes can also be extracted, including the encrypted strings. The fact that it is possible
to monitor obfuscation methods at the level of managed code in the Dalvik Monitor
using these functions and suggests that the use of this monitor to perform analyses
would be easy.

In this work, we used the DalvikMonitor to extract encrypted bytecode [27], which
we did by implementing themonitor to execute a simple synthetic application of which
the class is encrypted on the DalvikMonitor. Selected obfuscation tools for encryption
are DexGuard and DexProtector. Figure 3 shows source code written for the class
encryption test.

Figure 4a, b shows the outputs of analyses using the Dalvik Monitor. These outputs
are protected by DexGuard and DexProtector, respectively. As you can see from the
test results, although the class was encrypted, an attacker would have no problem

Fig. 2 Output of Dalvik Monitor

123

Mobile application tamper detection scheme using dynamic code. . . 3635

Fig. 3 Source code for class
encryption

(a)

(b)

Fig. 4 a Extracted code encrypted by DexGuard. b Extracted code encrypted by DexProtector

analyzing the structure and function of the encrypted class using the output class
without having information on the secret key.

Using theDalvikMonitor in this way enables anyone to easily even analyze applica-
tions that apply complex obfuscation and tamper detection schemes. Therefore, there
is a limit to the level of protection that can be provided by protection methods at the
managed code level, leaving applications vulnerable to becoming targets of a tamper-
ing attack at any time. This indicates that we need application tampering detection
methods at the platform level to protect users from repackaging attacks.

4 Proposed scheme

Until this point, we have confirmed that using protection schemes at the application
level does not allow us to properly protect an application from tampering attacks. This

123

3636 H. Cho et al.

Fig. 5 Structure of proposed scheme

led us to propose DexAttestor as an Android application tamper detection method that
uses a dynamic verification platform to protect applications and provide a safe running
environment.

The proposed scheme is largely composed of two parts. During the preliminary
preparation stage, core code is injected, with the purpose of detecting tampering in
the existing managed code. This is followed by the key part of the proposed scheme,
namely, the attestation stage, which occurs on the mobile device when the application
begins to run.

In this work, the section that injects tamper detection code is referred to as the
detection code injector, whereas the section that regulates code attestation is referred
to as the code attestor. The injected tamper detection code is simply a code that
determines whether there has been tampering based on the hash value of the Dex file,
i.e., the execution file of the Dalvik virtual machine. In this work, the injected tamper
detection code is referred to as core code.

The attestation stage is carried out using a method of inspecting instructions exe-
cuted in the Dalvik virtual machine by units of instruction. The attested code inspects
the hash value of the running application and checks its integrity, whereupon the pro-
posed scheme, at the platform level, verifies that the code and data that authenticate
the integrity of the application have not been tampered with. The structure of the entire
tamper detection technique is shown in Fig. 5.

When an application undergoing tamper verification is run, application information
is sent to the server, whereas information pertaining to the core code and the method
that includes the core code are received from the server.When core code is executed, the

123

Mobile application tamper detection scheme using dynamic code. . . 3637

instructions of the core code are compared to the received instructions of the original
code and inspected. During the inspection, if another instruction, which differs from
the original one, is executed or the parameters of the instruction are different, the
code attestor decides that the application has been tampered with and terminates it.
Applications that inspect the entire length of the original code verify the integrity of
the tamper investigation routine and are, thus, deemed safe, in which case, the Dalvik
virtual machine switches to execution mode and continues to run the app.

5 Architectural design

The architecture of the proposed scheme for dynamic application integrity verification
is shown in Fig. 6. The Dalvik virtual machine (VM), which implements the proposed
scheme, has twokinds ofmodes, executionmode and attestationmode. The application
is launched in attestation mode. When a code attestor module finishes attesting the
core code, the mode of the Dalvik VM is changed to execution mode.

The code attestor included in the Dalvik VM has an attestation interpreter that
executes Dalvik instructions and compares them with the original core code received
simultaneously from the server for tamper detecting.

The code attestor is composed of data transfer, execution trigger, attestation inter-
preter, and crypto modules. The attestation server has data transfer, database, and
crypto modules.

Fig. 6 Architecture of DexAttestor

123

3638 H. Cho et al.

5.1 Detection code injector

Android applications comprise multiple activities. An activity facilitates interaction
between the user and the application in the Android system by providing a visible
display, such as a dial or web browser [28]. In general, the activity first executed
when the application runs are known as the main activity. The tamper detection code
proposed in this paper is injected into the onCreate method of the main activity. This
is because onCreate method, as the section that initializes each activity of the Android
app, is the template method of the Android framework that cannot be deleted or have
its name changed [28]. Thus, if the tamper detection code is injected into the onCreate
method, we can prevent an attack that bypasses the execution of core code. As tamper
detection code can be defined in various ways, we have deemed the definition of the
code and the determination of its structure to be beyond the scope of this paper.

5.2 Code attestor

The code attestor that operates the overall tamper detection process and regulates code
attestation does not exist as a specific module; instead, it exists with all of the Dalvik
virtual machine (VM) codes. This signals that the Dalvik VM has made the transition
from its original state to a modified state in which the code attestation function has
been added to several areas, including the interpreter.

Application attestation occurs through the server and the modified Dalvik VM that
loads the proposed platform level code attestation function. The code attestor can be
classified as being in either attestation mode in which the application is attested or
execution mode in which only the functions for execution are run.

In attestationmode, the proposed system operates as follows. Before the application
runs and the interpreter that executes the Dex file is run, the Dalvik VM, from the list
of applications that need default tamper detection, verifies the package name of the
application that is running and determines whether the application should undergo
tamper detection. Before running the interpreter, the verified application requests the
core code from the server that called and executeddata transfer and receives the relevant
information of the core code. The received data include the method that contains codes
along with the core code and class information. If the process of receiving the data is
not complete, the application will not run.

When the code attestor has finished receiving the data, the application is run and,
based on the method according to which the data are received and class information,
wait for the execution of the method that includes the core code. In the Dalvik VM,
the instruction that calls the method is carried out using the Invoke instruction. This
instruction, as an operand, must use the parameter to be transmitted to the calling
method and the descriptor, method name, and the descriptor of the calling class. This
enables us to use the received data to verify whether the core method has been called.
The moment the method that includes the core code is called, the length of the core
code is stored in the global structure of the Dalvik virtual machine, and the flag that
determines that code attestation must be executed is modified. After verifying the flag
that indicates that attestation has begun, a task for core code attestation is additionally

123

Mobile application tamper detection scheme using dynamic code. . . 3639

executed in all the sections that carry out commands. Code attestation, after operands
parsinghas occurred, is carriedout by comparing the instruction, the hexadecimal value
of the operands, such as a register number, and the character string that converted the
string object into C string with the originals.

5.3 Attestation interpreter

The Dex file is executed by interpreting the Dalvik commands into machine language
compatible with the CPU architecture of the mobile device. The type and number
of operands differ according to the command type of the Dalvik instruction, each
of which uses a different method to parse operands. An operand consists of Dalvik
registers and an index for accessing data, such as the value of a constant or string.
The code attestor detects tampering by comparing the values of the instructions and
operands after the operands have been parsed when the instructions of the dex file
are loaded into memory and executed with the original values. For example, the data
needed to inspect the instruction that is const/4 v0, 0x0 will be made of 0x12,
0x00 (Fig. 7).

In the case that a string object is accessed, an attestation of the entire string value
is needed. This is because when object or field data is accessed, it is accessed using
the index of that data such that, in the case that data has been modified, we cannot
determine the integrity of the data using only commands and operands. Especially,
regarding string objects, they often contain important information, such as an important
hash value. Thus, we need a process that attests string content by converting the string
object stored in the dex file into a C string. In this paper, we use the ASCII code value
of the converted C string stored as a hexadecimal and inspects it for attesting the string.

The frame pointer, as the pointer that indicates the stack frame of the methods
managed by the Dalvik VM, always indicates the frame of the method being executed.
Core code attestation is carried out using this frame pointer on only the code of the

Fig. 7 Attestation interpreter built into the Dalvik interpreter

123

3640 H. Cho et al.

target method. Other methods called by the core method, and Android framework
codes are not inspected.

Once attestation of the codes requiring verification is complete, theDalvikVMdoes
not need any further verification process. This is because the previously determined
application tamper detection routine is injected into the core code, and the integrity of
the entire application can now be demonstrated with just the attestation of the tamper
routine. Therefore, once the task of verification has been completed, the proposed
system operates by simply executing those functions that run the application, such as
theDalvikVM, in the existingAndroid platform. On the other hand, during attestation,
if the application is determined to having been tampered with, the log is printed out
and the application is terminated.

5.4 Data transfer and crypto modules

There is a need for a module that manages data transfer to and from the server. In
addition, a module that encrypts data transmitted through the data transfer module is
required. Thus, these modules were implemented in code attestor to send or receive
the data securely.

5.5 Attestation server

The main function of the server is, based on the package information received from
the mobile device, to send the original core code of that package from the database.
In our proof-of-concept prototype, when the original core code is sent, the integrity
of the data is ensured using HMAC (keyed-hash message authentication code) [29].
The brief description of the protocol between the server and the mobile platform is
as follows. To request the core code, DexAttestor sends an identifier of the core code
(I Dcc) which contains application-specific information and/or device unique id. The
attestation server retrieves the corresponding core code (CC) and then generates a
hash value HMAC(Ks,CC) using the shared secret key (Ks). Then, the generated
HMAC(Ks,CC) is sent to the platform along with CC . DexAttestor on the platform
side checks the integrity of the received data (CC ||HMAC(Ks,CC)). We assume
that the secret key is pre-shared. The detailed methods for key distribution are beyond
the scope of this paper.

6 Experimental results

6.1 Implementation

TheDexAttestor prototype proposed in this paperwas created as follows. The detection
code injector was generated in the Eclipse IDE [30] development environment using
Java. The code attestor and attestation interpreter were developed by modifying the
Android version 4.4 Dalvik virtual machine. Experiments were run by porting the
modified platform onto a Nexus 5 device.

123

Mobile application tamper detection scheme using dynamic code. . . 3641

The data transfer module used a TCP socket, and base64 was used for the encoding
of transmitted data. The crypto module was developed using OpenSSL [31]—one of
the native libraries used by Android.

Apache was used as Linux OS middleware. Using PHP5 as the server language
and MySQL for the database, a LAMP (Linux Apache PHP MySQL) [32] server was
implemented.

6.2 Target application

The target application for the experiment was a W-bank application version 3.3.3 that
was specifically structured to bypass the tamper detection routine. Using the same
attack scenario as experimented in [5], the application was repackaged such that funds
would not be transferred to the intended recipient’s account but to that of the attacker
instead.Wepresumed that the attacker knew that the tamper detection code as proposed
in this paper had been injected into the repackaged application and, in response, built
an application to bypass this.

6.3 Result

The experiment was carried out by largely following two approaches. The target appli-
cation was first run on an established Android device, after which it was run on an
Android device to which DexAttestor was applied, as proposed in this paper.

Figure 8 shows the result of running the target applicationon the establishedAndroid
platform. As usual, the repackaging attack succeeded, and only standard operating
procedures can be observed.

Figure 9 shows the result of running the same application on an Android device
with DexAttestor built in. Results showed that the original core code and executed
code differed for the target application built to bypass the tamper detection routine,
causing the application to be terminated along with a message alerting the user of
tampering.

Fig. 8 Target application

123

3642 H. Cho et al.

Fig. 9 Target application is killed by DexAttestor

The core code of the tamper detection scheme proposed in this paper refers to the
section of code that cannot be altered by an attacker when running the app. If the
application was manipulated to bypass this code section, the instructions are changed,
and differed from the original code. Thus, a message alerting to tampering would
appear, and related processes would be terminated in Dalvik. If you print out and
inspect the entire code attestation process and all of the results using the Android
log system, you would be able to identify that they are the results of operating in the
platform. This tamper detection method of using code attestation at the platform level
supplements the existing weak protection techniques at the application program level.
Moreover, it provides users with a secure execution environment.

7 Discussion

DexAttestor has both advantages and disadvantages. The disadvantages ofDexAttestor
are the following: (1) when the app is launched, the network must be available; (2)
the proposed scheme needs the attestation server to verify the app; (3) the proposed
scheme could be adopted on the smartphone only by the mobile device manufacturers;
and (4) launching the app results in performance overhead to launch the app.

As a complement to the first and second disadvantage, based on costs and usability,
wearable devices, such as a smart watch, could be used instead of the attestation
server. More recently, mobile device manufacturers have released smart watches that
are used in combination with a smart phone and are developing wearable devices.
Those smart watches that have been released have storage, a CPU, and memory, and
can be connected to a smart phone using Bluetooth. Therefore, a wearable device can
perform the role of the server.

123

Mobile application tamper detection scheme using dynamic code. . . 3643

7.1 Performance overhead

We selected 50 Android applications, to which the tamper detection scheme was not
applied, from various categories of Google Play to evaluate the performance overhead
of DexAttestor. All tests are conducted on the Nexus 5 with DexAttestor and in the
same environment. Thus, in this evaluation, we assume that the transaction time for
receiving the core codes is the same; thus, it is not considered. The size of the core
code is about 24 KB.

The overhead was determined by checking the time required to load theMainActiv-
ity for each application, because DexAttestor starts running before the MainActivity
starts. Figure 10 shows the result of the evaluation. In the case of DexAttestor, the aver-
age time for loading the MainActivity is 6,308 ms, whereas the average time without
DexAttestor is 110 ms.

Furthermore, the overhead caused by DexAttestor varies according to the size and
number of threads of an application. As a consequence, the result of the evaluation
showed that about 6200 ms is needed to operate DexAttestor on average.

This overhead impose on every time when the target application is launched. To
reduce this overhead, we can employ a policy that decreasing the number of tamper
detection using DexAttestor. For example, if we conduct the tamper detection just one
time after the application is installed, we can avoid the overhead. However, it would
give the possibility to adversaries for the repackaging attack, since applications can be
upgraded at runtime. Therefore, the core code should be updated with respect to the
any type of updates of an application to inspect updated code and the tamper detection
should be conducted.

Fig. 10 Performance overhead of DexAttestor

123

3644 H. Cho et al.

8 Conclusion

Although various schemes to prevent Android application tampering attacks and
analyses, such as obfuscation, are being combined and used, they are inadequate in
responding to attacks on the platform, such as at Dalvik monitoring, and, instead, lead
to a performance degradation of the app.

In this paper, we proposed a tamper detection scheme that uses platform-level
core code attestation to address the weaknesses of existing managed code obfuscation
methods and tamper detection techniques. We showed that the analysis of encrypted
application was possible without secret key information using the Dalvik Monitor.

Unlike existing security methods that remain vulnerable to analysis and bypassing,
the proposed scheme, as a security service executed on the Android platform, can
fundamentally stop the execution of applications that have been tamperedwith through
repackaging. In addition, tampering in applications can now be detected without using
complicated functions, such as string encryption or class encryption that can decrease
efficiency.

Acknowledgments This researchwas supported by aGlobal Research Laboratory (GRL) program through
the National Research Foundation of Korea (NRF-2014K1A1A2043029).

References

1. Kopetz H (2011) Internet of things. In: Real-time systems. Springer, Berlin, pp 307–323
2. Wang X, Yang Y, Zeng Y, Tang C, Shi J, Xu K (2015) A novel hybrid mobile malware detection system

integrating anomaly detection with misuse detection. In: Proceedings of the 6th international workshop
on mobile cloud computing and services. ACM, pp 15–22

3. ArpD, SpreitzenbarthM, HubnerM, GasconH, RieckK. Drebin: efficient and explainable detection of
android malware in your pocket. In: Proc. of 17th network and distributed system security symposium,
NDSS, vol 14

4. Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A study of android application security. In:
USENIX security symposium, vol 2, p 2

5. Jung JH, Kim JY, Lee HC, Yi JH (2013) Repackaging attack on android banking applications and its
countermeasures. Wirel Pers Commun 73(4):1421–1437

6. Aucsmith D (1996) Tamper resistant software: an implementation. In: Information hiding. Springer,
Berlin, pp 317–333

7. Stringer. https://jfxstore.com/stringer/
8. Allatori. http://www.allatori.com/
9. Dexprotector. https://dexprotector.com/

10. Dexguard. https://www.guardsquare.com/dexguard
11. Schulz P (2012) Code protection in android. Insititute of Computer Science, Rheinische Friedrich-

Wilhelms-Universitgt, Bonn
12. Collberg C, Thomborson C, Low D (1997) A taxonomy of obfuscating transformations. Tech. rep.,

Department of Computer Science, The University of Auckland, New Zealand
13. Brzozowski M, Yarmolik VN (2007) Obfuscation as intellectual rights protection in VHDL language.

In: 6th international conference on computer information systems and industrial management appli-
cations, CISIM’07. IEEE, pp 337–340

14. Low D (1998) Java control flow obfuscation. Ph.D. thesis, Citeseer
15. Forman IR, Forman N, Ibm JV (2004) Java reflection in action
16. Piao Y, Jung JH, Yi JH (2016) Server-based code obfuscation scheme for apk tamper detection. Secur

Commun Netw 9(6):457–467
17. Android reverse engineering and defenses. https://bluebox.com/wp-content/uploads/2013/05/

AndroidREnDefenses201305.pdf

123

https://jfxstore.com/stringer/
http://www.allatori.com/
https://dexprotector.com/
https://www.guardsquare.com/dexguard
https://bluebox.com/wp-content/uploads/2013/05/AndroidREnDefenses201305.pdf
https://bluebox.com/wp-content/uploads/2013/05/AndroidREnDefenses201305.pdf

Mobile application tamper detection scheme using dynamic code. . . 3645

18. Fake encryption sample. https://github.com/blueboxsecurity/DalvikBytecodeTampering
19. Apvrille A (2013) Playing hide and seek with Dalvik executables. In: Hack. Lu, October (2013)
20. Cho H, Lim J, Kim H, Yi JH (2016) Anti-debugging scheme for protecting mobile apps on android

platform. J Supercomput 72(1):232–246
21. Petsas T, Voyatzis G, Athanasopoulos E, Polychronakis M, Ioannidis S (2014) Rage against the virtual

machine: hindering dynamic analysis of android malware. In: Proceedings of the seventh European
workshop on system security. ACM, p 5

22. Alliance OH (2011) Android overview. Open Handset Alliance, USA
23. Apktool. http://ibotpeaches.github.io/Apktool/
24. Baksmali. https://github.com/JesusFreke/smali
25. Yan LK, Yin H (2012) Droidscope: seamlessly reconstructing the OS and Dalvik semantic views for

dynamic android malware analysis. In: USENIX security symposium, pp 569–584
26. Android open source project. https://source.android.com/
27. Yi JH, Cho H, Bang J, Ji M (2015) Application code analysis apparatus and method for code analysis

using the same. KR Patent 101557455
28. Developers A (2009) Android activity
29. Bellare M, Canetti R, Krawczyk H (1996) Keying hash functions for message authentication. In:

Advances in cryptology, CRYPTO’96. Springer, Berlin, pp 1–15
30. Eclipse. https://eclipse.org/
31. Viega J, Messier M, Chandra P (2002) Network security with openSSL: cryptography for secure

communications. O’Reilly Media Inc., Sebastopol
32. Ware B et al (2002) Open source development with LAMP: using Linux, Apache, MySQL and PHP.

Addison-Wesley Longman Publishing Co., Inc., Boston

123

https://github.com/blueboxsecurity/DalvikBytecodeTampering
http://ibotpeaches.github.io/Apktool/
https://github.com/JesusFreke/smali
https://source.android.com/
https://eclipse.org/

	Mobile application tamper detection scheme using dynamic code injection against repackaging attacks
	Abstract
	1 Introduction
	2 Background
	2.1 Code obfuscation
	2.2 Tamper detection
	2.3 Anti-analysis schemes

	3 Android application analysis
	3.1 Analytical methods
	3.2 Analysis using the Dalvik Monitor

	4 Proposed scheme
	5 Architectural design
	5.1 Detection code injector
	5.2 Code attestor
	5.3 Attestation interpreter
	5.4 Data transfer and crypto modules
	5.5 Attestation server

	6 Experimental results
	6.1 Implementation
	6.2 Target application
	6.3 Result

	7 Discussion
	7.1 Performance overhead

	8 Conclusion
	Acknowledgments
	References

