

Entropy 2015, 17, 3947-3962; doi:10.3390/e17063947

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Personal Information Leaks with Automatic Login in Mobile
Social Network Services

Jongwon Choi, Haehyun Cho and Jeong Hyun Yi *

School of Computer Science and Engineering, Soongsil University, Seoul 156-743, Korea;

E-Mails: bluster100@gmail.com (J.C.); haehyuncho@gmail.com (H.C.)

* Author to whom correspondence should be addressed. E-Mail: jhyi@ssu.ac.kr;

Tel.: +82-2-820-0914; Fax: +82-2-823-0914.

Academic Editors: James Park and Wanlei Zhou

Received: 17 January 2015 / Accepted: 5 June 2015 / Published: 10 June 2015

Abstract: To log in to a mobile social network service (SNS) server, users must enter their

ID and password to get through the authentication process. At that time, if the user sets up

the automatic login option on the app, a sort of security token is created on the server based

on the user’s ID and password. This security token is called a credential. Because such

credentials are convenient for users, they are utilized by most mobile SNS apps. However,

the current state of credential management for the majority of Android SNS apps is very

weak. This paper demonstrates the possibility of a credential cloning attack. Such attacks

occur when an attacker extracts the credential from the victim’s smart device and inserts it

into their own smart device. Then, without knowing the victim’s ID and password, the

attacker can access the victim’s account. This type of attack gives access to various

pieces of personal information without authorization. Thus, in this paper, we analyze the

vulnerabilities of the main Android-based SNS apps to credential cloning attacks, and

examine the potential leakage of personal information that may result. We then introduce

effective countermeasures to resolve these problems.

Keywords: credential; Android vulnerability; authentication; personal information leakage

OPEN ACCESS

Entropy 2015, 17 3948

1. Introduction

Because smart devices offer the ability to access services from anywhere, they often carry a great

deal of personal data. This has the disadvantage that these personal data present an attractive target to

hackers. Various mobile social network service (SNS) apps allow users to create a network to manage

relationships among friends based on their accumulated contacts [1–5]. For example, the Google

Account app, which is built-in to the Android system, makes personal information such as a user’s

contacts, e-mail, call history, schedule, and web history accessible after the user has logged in. For

users’ convenience, most mobile SNS apps provide an automatic login function using credentials,

which are security tokens that certify a user’s identity. Credentials are generally used by the server to

validate a requesting user. When a user logs in to the mobile SNS server, they enter their ID and

password to get through the authentication process. From that point on, they can then be logged in without

re-entering their ID and password. Nowadays, the majority of SNS service providers have adopted such

credential-based authentication methods. Thus, as credentials are very sensitive data [6–8] that

potentially allow users to access a full range of services, they should be carefully managed by

mobile devices.

However, if the credentials are managed insecurely, they may be duplicated. Attackers can then use

the cloned credentials to log in to the victim’s service account, and are able to steal a variety of the

victim’s information [9–11]. We call this a credential cloning attack. In this paper, we explore the

robustness of some well-known mobile SNS apps against credential cloning attacks, and then

introduce countermeasures to improve security.

This paper is organized as follows. First, in Section 2, we introduce some background information.

In Section 3, we describe a credential cloning attack in more detail. Section 4 presents experimental

results for the majority of mobile SNS apps. In Section 5, we outline our proposed countermeasures to

improve security in these apps. Finally, we give our conclusions in Section 6.

2. Background

2.1. Android Storage Partition

Android provides storage space to save credential data used by an app. Table 1 presents partition

information for the Android file system. Among these, the /system and /data partitions are the most

important. The /system partition is the storage space used by system apps installed by Google, device

manufacturers, or network operators. The /data partition is where data from user-installed apps

are stored.

Table 1. Partition information for Android storage.

Mount Point Description

/cache Storage location for temporary files
/system Location of system apps
/data Location of user-installed apps
/sdcard Location accessible by external SD card

Entropy 2015, 17 3949

Credentials are stored on these partitions depending on the privilege of the apps. That is, the

credentials of system apps are located on the /system partition, whereas credentials of user-installed

apps are on the /data partition. Each app runs by reading and writing the credential file on the

corresponding partition.

2.2. Credential Location and Application Programming Interface (API)

The credential locations of popular SNS apps are summarized in Table 2. All apps use the API

provided by the Android SDK (Software Development Kit) related to credential management. App

developers store various configuration data inside the smart devices. Credential data are a form of

configuration file for automatic login, and are managed by the Android API. For more details,

system-privileged apps such as Google Account and Samsung Account store their credential files in a

database form. To access this data, Account Manager is invoked as an API. In the case of

user-privileged apps, credential files are stored in XML or database form, and are accessed by

invoking SharedPreferences or SQLite, respectively. With this knowledge about the locations of each

app, an attacker is able to obtain credentials.

Table 2. Credential locations and related API for popular SNS apps.

Name Location API

Google Account /data/system/accounts.db AccountManager

Facebook
/data/data/com.facebook.katana
/databases/prefs_db.db

SQLite

Kakaostory
/data/data/com.kakao.story
/database/kakao_story.db

SQLite

Cyworld
/data/data/com.btb.minihompy
/shared_prefs/SKCOMMS_ACCOUNTDATA.xml

SharedPreferences

2.3. Sandbox

The Android platform uses Linux’s user-based protection feature, called sandbox [12], to

differentiate applications, with each app assigned a UID (User Identifier). To support this feature,

sandbox should be implemented in the kernel level. Thus, user-privileged apps cannot exchange data

with other apps. In other words, because the credential is a kind of data, it is stored where it cannot be

accessed by other apps. Thus, we apply a well-known rooting technique to enable the attacker to

access the victim’s credentials on the target device.

2.4. Unauthorized Data Access

In situations where an attacker cannot physically access the victim’s smart device, a social

engineering attack can be used to steal personal data. This can be achieved by installing malware on

the smart device. A typical example is an application repackaging attack. Because of certain structural

features of Android applications, repackaging attacks [13] can be applied without difficulty.

However, as we need to extract the credential from the victim’s device, we assume that the attacker

can access the smart device physically, and is able to activate ADB (Android Debug Bridge). ADB is

Entropy 2015, 17 3950

a software tool included in the Android SDK to manage Android devices and emulators. This method

can be used when the smart device is secured with its screen locked (requiring a PIN, password,

pattern lock, etc. to access), or when the smart device’s screen is physically damaged. This is a very

serious condition because the attacker can directly install an app or obtain administrator privileges,

directly access the device’s internal data, and then leak the information out of the smart device. The

main features of ADB are device connection detection, shell access, data extraction/insertion (rooting

device), and application installation/uninstallation. ADB’s pull instruction is used to extract personal

information.

In the case that ADB is inactive, a recovery mode attack can be applied. For this, the attacker must

first make a customized recovery image. The attacker then loads this image onto the recovery partition

using malicious code. After uploading the image, the attacker can raise their privilege level, access the

user’s personal data, and then leak the information.

2.5. Code Obfuscation

Code obfuscation [14] is a kind of program transformation that makes it difficult for attackers to

read the program logic, thereby increasing the resistance to reverse engineering. There has been a lot

of research on native code obfuscation in recent decades with the aim of protecting PE (Portable

Executable) or ELF (Executable and Linkable Format) files. Nowadays, with mobile apps increasingly

popular, issues related to Java code obfuscation have become an important topic of research. In

practice, there are five major obfuscation features that can be applied in Java: renaming identifiers,

control flow randomization, string encryption, API hiding, and class encryption. Simply put, renaming

identifiers involves replacing the original names of the classes, fields, and methods with meaningless

words. This increases the time required to reverse engineer the app structure. The objective of control

flow randomization is to mislead the decompiler into adding some junk code, thus protecting the logic

of the method and variables. In string encryption, the original string constant in Java is encrypted. API

hiding is used to prevent a static analysis from discovering sensitive APIs, generally via a reflection

mechanism. The mechanism for encrypting an entire class is called class encryption. When an app

contains encrypted classes, it decrypts these first and loads them into a class pool on the virtual machine.

3. Credential Cloning Attacks

3.1. Assumptions

As mentioned in Section 2.4, to enable credential to be cloned, it is assumed that physical access to

the device is possible, and that ADB is activated. In this scenario, even if the smart device is protected

by a screen lock or has a physically damaged screen, the attack is still possible. In reality, to prevent

various data leakage from lost devices, smart devices provide a certain user authentication mechanism

of their own to protect against shoulder-surfing attacks [15,16], smudge attacks [17], and so on. In our

scenario, we do not consider security based on such human–computer interaction to be available. It is

assumed that the attacker can simply extract the credential data from the smart devices, insert the

extracted credentials to the attacker’s smart device, and access the target’s various services.

Entropy 2015, 17 3951

3.2. Attack Scenario

The attacker starts rooting the smart device. This process is done to acquire administrator

permission to access the data section. Rooting removes the permission constraints placed by the device

provider, and can be performed using well-known rooting tools such as Odin3 [18] and Super One

Click [19]. After rooting the smart device, the attacker connects a USB cable from a PC to the smart

device, and then uses ADB’s “pull” instruction to extract the credential files. After extracting the

credentials stored on the victim’s smart device, the attacker inserts them into their own smart device.

By connecting the desktop to the attacker’s smart device with the USB cable, the attacker can use

ADB’s “push” instruction to insert the victim’s credential files. Typically, the insertion path is the

application’s data directory, which is /data/data/[package_name]/.

Figure 1 illustrates the process of credential cloning using an automatic login. After extracting the

credential stored in the victim’s smart device, the attacker inserts it into their own smart device. Then,

when the app is running, it requests authentication from the server using the victim’s credential, and

the server starts the authentication using the victim’s account. Using the victim’s account, the attacker

is able to automatically log in without entering the ID and password. In general, because credentials

are constructed with the user’s ID, password, and other personal information as an input, if an ID and

password were stored in the form of plaintext, there would be a number of security problems.

Therefore, app developers apply various techniques, including encryption, to protect such sensitive

data before they are stored on smart devices. However, in a credential cloning attack, the attacker does

not need to decrypt or analyze the credential data, because the data itself can be used for authentication

from the server. Having completed the authentication process, the server transmits all of the victim’s

personal information to the attacker’s smart device, and the attacker is free to analyze the data and gain

access to the victim’s information.

Figure 1. Overview of a credential cloning attack.

Entropy 2015, 17 3952

3.3. Attack Method

3.3.1. Analysis of Credential Location

An attacker can reverse engineer target apps such as Google Account and Facebook to determine

the location of their credentials. After extracting the smali code [20] from a decompiled Google

Account app, we can find the credential management routine from the source code, as shown in

Figure 2. The package path is com/google/android/gsf/loginservice, and the class file name is

GLSUser. A variety of information about the corresponding account is stored in the mAccount object.

We can also infer that the e-mail address and encrypted password used during each login are stored in

the mEmail and mEncryptedPassword string objects, respectively.

.class public Lcom/google/android/gsf/loginservice/GLSUser;

.super Ljava/lang/Object;

.source “GLSUser.java”

#instance fields
.field mAccount:Landroid/accounts/Account;
.field public mEmail:Ljava/lang/String;
.field mEncryptedPasswrod:Ljava/lang/String;

Figure 2. Routine to manage credentials for Google Account.

Figure 3 shows the routine used to store credentials in the Google Account app. We can see that

the firstSave method is called as the app begins to run; the addAccountExplicitly method of the

AccountManager API is invoked within this method. When the addAcountExplicitly method is

invoked, the credential file corresponding to the unique database file of the actual smart device is

stored. However, if the AccountManager API is used, the credential will be managed as accounts.db in

the internal /data/system partition. All apps using that API will store their credentials in

/data/system/accounts.db. The location of the credential for the Google Account app can be similarly

found.

.method private firstSave(zLjava/lang/String;…)

.locals 13
.parameter “browserFlow”
.parameter “sid”
.parameter “lsid”

.

.

.
iget-object v10, p0
 Lcom/google/android/gsf/loginservice/GLSUser;
 ->mAccount:Landroid/accounts/Account;

invoke-virtual {v9, v10, v8, v5},
 Landroid/accounts/AccountManager;->addAccountExplicitly

(Landroid/account/Account;Ljava/lang/String;
 Landroid/os/Bundle;)Z

Figure 3. Routine to store credentials for Google Account.

Entropy 2015, 17 3953

Figure 4 shows the routine for creating credentials for the Facebook app. As we can see, Facebook

uses the SQLite API to store its credential. With this knowledge, we can figure out that the credential

is managed in a database form, and that a credential file is created under the name prefs_db.

.method public constructor <init>(Landroid/...)V

.locals 3
.parameter

.prologue
.line 29
const-string v0, "prefs_db"

.

.

.
const/4 v2, 0x1

invoke-direct {p0,p1,v0,v1,v2}, Landroid/database/sqlite
 /SQLiteOpenHelper;-><init>(Landroid/content/...)V

.line 30
return-void
.end method

Figure 4. Routine to create credentials for Facebook.

3.3.2. Credential Extraction

Once the attacker has found the location of the credential and its relevant API, they root the smart

device. The attacker can then extract the credential using the ADB “pull” command. A detailed

description is as follows (see Figure 5).

1) Connect the rooted smart device to a desktop machine with a USB cable

2) Run the shell by entering the “adb shell” command in the prompt

3) Obtain permission to access “/data/” partition by entering the “su” command in the prompt

4) Change the prompt directory that includes the credential using “cd /data/system/<package_name>”

5) Change the credential file’s extraction permission using “chmod <mode> <file>”

6) After closing the shell, copy the credential from the smart device onto the desktop using “adb

pull <remote> <local>”

C:\Google>adb shell
shell@android:/ $ su
su
root@android:/ # cd /data/system
cd /data/system
root@android:/data/system # chmod 777 accounts.db
chmod 777 accounts.db
root@android:/data/system # ll
ll
-rwxrwxrwx system system 334 SimCard.dat
-rwxrwxrwx system system 90112 accounts.db

.

.

.
C:\Google>adb pull /data/system/accounts.db
3833 KB/s (4192850 bytes in 1.068s)

Figure 5. Credential extraction procedure.

Entropy 2015, 17 3954

3.3.3. Credential Insertion

After extracting the credential from the victim’s smart device, the attacker inserts it into their own

smart device. The detailed procedure is as follows (see Figure 6).

1) Connect the attacker’s smart device to the desktop with a USB cable

2) Copy the credential file extracted from the victim’s smart device into the data directory of the

attacker’s smart device using “adb push <local> <remote>”

3) Launch the app in the attacker’s smart device

C:\Google>adb push accounts.db /data/system/accounts.db

3833 KB/s (4192850 bytes in 1.070s)

Figure 6. Credential insertion procedure.

Currently, Android apps store credential files in the internal /data directory, and it is assumed that

the attackers are always able to repackage the target apps according to their intentions. To protect

against such a repackaging attack, many apps encrypt the credential file with a unique device identifier

such as IMEI or ANDROID_ID to make the copied credential meaningless on any other devices.

However, ANDROID_ID can be accessed by the attacker using the relevant API included in the

Android SDK (see Figure 7). The ANDROID_ID of the victim’s device can be determined from the

smali code obtained by disassembling the bytecode corresponding to the API for finding

ANDROID_ID. The attacker then uses the extracted ANDROID_ID for their malicious purpose.

Figure 8 shows that the extracted ANDROID_ID can be inserted into the smali code. The original code

used the v0 register to read ANDROID_ID dynamically from the device. However, the modified code

statically sets the v0 register value to the victim’s ANDROID_ID. After recompiling the modified

smali codes, the victim’s credential is successfully inserted, even though a device identity checking

mechanism is applied.

Settings.Secure.getString(getContentResolver(), “android_id”)

Figure 7. Source code for reading ANDROID_ID.

const-string v1, “android_id”

invoke-static {v0, v1}, Landroid/provider/Settings$Secure;

->getString(…)Ljava/lang/String;

move-result-object v0

const-string v0, “9b363ac21b566fc2”

ANDROID_ID of Victim`s Smart Device

if-nez v0, :cond_0

const-string v0, “”

:cond_0
invoke virtual {v0], Ljava/lang/String;->hashCode()I

Figure 8. Smali code to which the victim’s ANDROID_ID is inserted.

Entropy 2015, 17 3955

4. Experimental Results

In this section, we examine apps’ vulnerability to information leakage from the credential cloning

attack described above. We experiment with Google Account version 4.4.2-937116 and Facebook

version 17.0.0.23.16 (note that, as of March, 2015, the latest version of Facebook is 20.0.0.25.15. and

that credential cloning attack no longer works on this or later versions).

4.1. Google Account

The main objective of Google Account is to sync various data stored on the server and conveniently

backup and restore data for users. If this function were to be used by an attacker who had automatically

logged-in using a victim’s credential, then Google Account could be used to gather all sorts of data

from the breached account. Figure 9 shows the results of a successful automatic login from an

attacker’s device by copying a victim’s Google Account credential.

Figure 9. Result of an automatic login to Google Account using a victim’s credential.

Figure 10 illustrates the leakage of contacts stored on the Google server. This may occur when

an attacker synchronizes their own smart device using a victim’s Google Account credential to

automatically log-in. Because Google Account not only syncs contacts, but also user information such

as e-mail, calendar, app data, web history, and so on, even personal information such as the victim’s

name, gender, age, and occupation is also leaked.

Google Account provides more than a simple data backup and recovery service. Google provides

a variety of APIs for app developers, creating a development environment in which a diverse range of

apps can use the Google Account credential. Consequently, with the Google Account credential,

an attacker can access many services provided by numerous applications using a victim’s account.

Table 3 lists the most commonly used apps that are built to interact with Google Account.

Entropy 2015, 17 3956

Figure 10. Contacts leaked by synchronization of Google Account.

Table 3. Selected apps built in Google Account.

Apps Description Leaked Information

Hangout Chatting program Friends and chat history
Chrome Browser Web browser Bookmarks, secret tabs
Google Calendar Scheduling calendar program Schedule, task lists
Google Drive Document sharing Privately shared documents
Google Map Location information service provider Location information
Dropbox Photos and documents storage Personal photos, documents, etc.

4.2. Facebook

SNS apps support connections between online users who share similar interests, and provide a

variety of communication outlets such as social activities. Thus, if an attacker procures the credentials

of an SNS app, they can obtain information on the victim’s hobbies, interests, and networks. Figure 11

illustrates a successful automatic login by an attacker who has inserted the Facebook app credential

into their own smart device. This confirms that by simply inserting the credential, an attacker is freely

authenticated by the server, and can access the victim’s account on the Facebook server.

From the services provided by Facebook, the attacker can gather personal information such as the

victim’s name, occupation, etc. Moreover, the attacker can access information about the victim’s

friends and groups from the leaked posts or messages on the victim’s SNS. Table 4 shows the major

SNS apps and the information that each is vulnerable to leaking.

Entropy 2015, 17 3957

Figure 11. Result of an automatic login to Facebook using victim’s credential.

Table 4. Information leaked from SNS apps.

Type Facebook Kakaostory Cyworld

Personal Information O O O
Friends’ Information O O O
Group Information O X O
Posted Messages O O O
Location Information O X X

The real device’s /data directory contains more than just the credential itself. Figure 12 shows

a Facebook database file opened by SQLite Database Browser. Inside the friend table in the database

file, we can see the victim’s friend list and profile pictures. Thus, as well as the credential, the /data

directory includes other files that contain sensitive data. The experimental results show that various

data such as friend lists, address books, profile pictures, etc. could be leaked from these database files.

Figure 12. Additional information leaked from a Facebook database.

Entropy 2015, 17 3958

5. Countermeasures

In this section, we introduce several methods to mitigate the many threats caused by a credential

cloning attack.

5.1. Server-Based Credential Management

Bear in mind that, as we have mentioned before, there is a clear limit to what client (i.e., mobile

device) based security techniques can do. The existing method sends credentials to the server.

Therefore, if data are hijacked, they can be misused, assuming that any apps on the client side can be

repackaged. Our observations indicate that the code for identification should not be stored on the client

side. Although most apps employ very similar “lock” functions, whereby the password or pattern value

is stored on the client side, all of the apps we tested could be hacked within minutes. Because it is

doubtful whether lock functions are beneficial to an app’s performance (and because not all apps use

the lock function), it is worth considering the implementation of an additional identification process.

We thus suggest using additional data, other than the password, that the user knows but a random

attacker does not. This method would have the user enter a PIN along with the credential whenever a

smart device tries to automatically log in to an app after reading the credential file. By sending the PIN

along with the credential, the server can check whether the owner of the credential has changed. Even

if an attacker hijacks the credential file, they cannot access the victim’s account unless they also know

the PIN. Although this method has the disadvantage of asking users for additional input, it could be

viable, especially considering the current solution in which an external hardware device such as an

OTP (One-Time Password) is considered to be acceptable.

5.2. Hardware-Assisted Credential Management

The major weakness in credential management for existing apps is that the credential is simply

stored within the smart device without any security measures. To block credential cloning attacks, the

credential should be stored separately and managed on an external device. In this way, an attacker

would be unable to gain access to the credential using only the victim’s smart device. As a result,

without the ID and password or credential, the attacker cannot login to the service provider, and cannot

gain access to any of the victim’s information. This solution has the drawback of requiring a separate

medium. However, as a countermeasure for recent mobile app security vulnerabilities, security

solutions that utilize a variety of external devices (including wearable computing devices such as the

smart watch) are being actively implemented. Thus, it is predicted that, gradually, the resistance to

security methods that require a separate device to be carried will decrease.

5.3. Session Management

In the case of credential cloning, the most effective method of preventing the leakage of information

is session management on the server. The current problem is that messages can be simultaneously sent

and received in real time. It is important that the legitimate user device is identified on the server, and

that only one session is maintained. Although most apps do not allow duplicate access from different

devices, they do permit session requests that have the same device ID. Ironically, this results in

Entropy 2015, 17 3959

maintaining two or more connections per user. The very nature of mobile devices, however, will make

it difficult to determine an adequate number of connections. The use of discrimination methods based

on existing signaling systems should be considered, as well as implementing the additional

identification method introduced in Section 5.1.

5.4. Code Integrity Check

In terms of server-based integrity checking, the most commonly used method is hash authentication

of the signature. The hash value is useful for verifying the integrity of falsified areas of code that have

been repackaged by an attacker. However, if this routine exists within the app’s internal code, the

attacker can also tamper with this method, making it insecure. For this reason, this signature value

must be sent to the server without the client internally verifying the signature. Because the transmitted

data may be exposed online, SSL communication must be used. To prevent attacks on memory dumps,

the memory area containing the hash string should be immediately deallocated.

A second method only provides necessary information to the registered client if the initial

verification is successful. Currently, most apps run the integrity checking routine once, and allow the

app to run normally if the return value from this check is correct. This method is very vulnerable to

reverse engineering, and leaves an identification flag within the server. This method of sending

information should only be used when this flag is normal. Using this method, even if an attacker were

to repackage the app to make it appear as a normal app, no information can be gained from the server.

For this to happen on an actual server, more elaborate verification is needed. We must keep in mind

that, because apps linking the dynamic library file can be falsified, a simple signature verification

mechanism will not suffice.

5.5. Code Obfuscation

Many apps do not currently use obfuscation and, even if they do, they use the Android-provided

Proguard [21]. However, there are many methods of bypassing Proguard, and its security level is very

low. Thus, a more secure obfuscation technique should be applied to hide the API name, function

name, and variable identifier. As the location of the security mechanism routine can be easily inferred

from the log or string variable, it is important to encode the string variable and discard the log. In

particular, we could obtain critical information, such as the location and name of the credential, from

each app’s APIs, which are used to control credential files. Therefore, API hiding should be employed

to hide such API invocations and protect against credential cloning attacks.

5.6. Tamper Detection

This method determines whether an application’s APK (Android application package) has been

tampered with by inspecting the signatures of the primary apps. If used in conjunction with a mobile

anti-virus program, this method is predicted to form an effective response. Of course, it is only

effective when a forged app is installed.

Entropy 2015, 17 3960

5.7. Code Attestation

Although obfuscation can cause some difficulties when an attacker uses the protective mechanism

of the application layer with static code protection techniques, it is difficult to protect the code when

running the app. Supplementing this, an app’s code can be dynamically protected during runtime by

code attestation, which uses protective hardware such as TEE (Trusted Execution Environment)

[22–25] as the trusted point. Using this, not only can the smartphone platform be protected, but, by

verifying that an app has been tampered with, a more reliable protective service can be provided.

6. Conclusions

We have examined the weaknesses of the credential management mechanisms in well-known

mobile SNS apps using real experimental results. These weaknesses can bring about serious problems

such as personal information leakage. When a smart device is lost or stolen, an attacker can use the

credential files to gain full access to all of the victim’s personal information. Such leaked personal

information may be used in cybercrimes such as phishing or spam email. Therefore, to make mobile

SNS apps immune to credential cloning attacks, some relevant security mechanisms must be

supplemented. We introduced a number of candidate solutions including server-based credential

management, session management, code obfuscation, code integrity checking, and code attestation to

prevent the simple reverse engineering of Android apps.

Acknowledgments

This research was supported in part by a Global Research Laboratory (GRL) program through the

National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT, and Future

Planning (NRF-2014K1A1A2043029), and in part by the Next-Generation Information Computing

Development Program through NRF, funded by the Ministry of Science, ICT & Future Planning

(2010-0020726).

Author Contributions

All authors have contributed to the study and preparation of the article. All authors have read and

approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Kim, H.-I.; Kim, Y.-K.; Chang, J.-W. A grid-based cloaking area creation scheme for continuous

lbs queries in distributed systems. J. Converg. 2013, 4, 23–30.

2. Kim, J.; Yoon, Y.; Yi, K.; Shin, J. Scandal: Static analyzer for detecting privacy leaks in android

applications. Presented at the IEEE CS Security and Privacy Workshop (SPW), San Francisco,

Entropy 2015, 17 3961

CA, USA, 24–25 May 2012; Available online: http://www.mostconf.org/2012/papers/26.pdf

(accessed on 8 June 2015).

3. Kumar, K.K.; Geethakumari, G. Detecting misinformation in online social networks using

cognitive psychology. Hum. Centric Comput. Inf. Sci. 2014, 4, 1–22.

4. Lee, J.D.; Sin, C.H. PPS-RTBF: Privacy protection system for right to be forgotten. J. Converg.

2014, 5, 37–40.

5. Moein, S.; Gebali, F.; Traore, I. Analysis of covert hardware attacks. J. Converg. 2014, 5, 26–30.

6. Abbas, F.; Oh, H. A step towards user privacy while using location-based services. J. Inf. Process.

Syst. 2014, 10, 618–627.

7. Crowell, A.; Ng, B.H.; Fernandes, E.; Prakash, A. The confinement problem: 40 years later. J. Inf.

Process. Syst. 2013, 9, 189–204.

8. Enck, W.; Gilbert, P.; Chun, B.-G.; Cox, L.P.; Jung, J.; McDaniel, P.; Sheth, A.N.

Taintdroid: An information flow tracking system for real-time privacy monitoring on

smartphones. Commun. ACM 2014, 57, 99–106.

9. Enck, W.; Ongtang, M.; McDaniel, P.D. Understanding android security. IEEE Secur. Priv. 2009, 7,

50–57.

10. Feese, S.; Burscher, M.; Jonas, K.; Troster, G. Sensing spatial and temporal coordination in teams

using the smartphone. Hum. Centric Comput. Inf. Sci. 2014, 4, 1–18.

11. Jun, K. Push-n-scheme with timeout for content delivery of social networking services. J. Inf.

Process. Syst. 2014, 10, 81–91.

12. Android Developer. Available online: http://developer.android.com/training/articles/security-

tips.html (accessed on 5 April 2015).

13. Jung, J.-H.; Kim, J.Y.; Lee, H.-C.; Yi, J.H. Repackaging attack on android banking applications

and its countermeasures. Wirel. Pers. Commun. 2013, 73, 1421–1437.

14. Piao, Y.; Jung, J.H.; Yi, J.H. Server‐based code obfuscation scheme for apk tamper detection.

Secur. Commun. Netw. 2014, doi:10.1002/sec.936.

15. Bianchi, A.; Oakley, I.; Kostakos, V.; Kwon, D.S. The Phone Lock: Audio and Haptic Shoulder-

Surfing Resistant Pin Entry Methods for Mobile Devices. In Proceedings of the 5th International

Conference on Tangible, Embedded, and Embodied Interaction, Funchal, Madeira, Portugal, 23–

26 January 2011; pp. 197–200.

16. Kim, S.W.; Yi, H.Y.; Ma, G.I.; Yi, J.H. Shoulder-Surfing Resistant Smartphone Authentication

Scheme Using Virtual Joystick, Applied Mechanics and Materials. Appl. Mech. Mater. 2013, 284,

3497–3501.

17. Aviv, A.J.; Gibson, K.; Mossop, E.; Blaze, M.; Smith, J.M. Smudge attacks on smartphone touch

screens. WOOT 2010, 10, 1–7. Available online: https://www.usenix.org/legacy/event/woot10/

tech/full_papers/Aviv.pdf (accessed on 8 June 2015).

18. Al Mutawa, N.; Baggili, I.; Marrington, A. Forensic analysis of social networking applications on

mobile devices. Digit. Investig. 2012, 9, S24–S33.

19. Vidas, T.; Votipka, D.; Christin, N. All Your Droid are belong to us: A Survey of Current Android

Attacks. In Proceedings of WOOT’11, the 5th USENIX conference on Offensive technologies,

Carrollton, TX, USA, 2011; pp. 81–90.

Entropy 2015, 17 3962

20. Jeon, J.; Micinski, K.K.; Vaughan, J.A.; Fogel, A.; Reddy, N.; Foster, J.S.; Millstein, T. Dr.

Android and Mr. Hide: Fine-Grained Permissions in Android Applications. In Proceedings of the

2nd ACM Workshop on Security and Privacy in Smartphones and Mobile Devices; Raleigh, NC,

USA, 16–18 October 2012; pp. 3–14.

21. Lafortune, E. Proguard. Available online: http://proguard. sourceforge.net (accessed on 5 April

2015).

22. Loureiro, S.; Molva, R.; Roudier, Y. Mobile code security. In Proceedings of the ISYPAR 2000

(4ème Ecole d'Informatique des Systèmes Parallèles et Répartis), Toulouse, France, 1–3 February

2000; p. 46.

23. Jansen, W.A. Countermeasures for mobile agent security. Comput. Commun. 2000, 23, 1667–

1676.

24. Dietrich, K.; Winter, J. Implementation Aspects of Mobile and Embedded Trusted Computing. In

Trusted Computing, Proceedings of Second International Conference on Trust, Oxford, UK, 6–8

April 2009; Lecture Notes in Computer Science, Volume 5471; Springer: Berlin/Heidelberg,

Germany, 2009; pp. 29–44.

25. Sander, T.; Tschudin, C.F. Towards mobile cryptography. In Proceedings of the 1998 IEEE

Symposium on Security and Privacy, Oakland, CA, USA, 3–6 May 1998; pp. 215–224.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

