
Playing for K(H)eaps:
Understanding and Improving Linux Kernel Exploit Reliability

Kyle Zeng∗,†, Yueqi Chen∗,‡, Haehyun Cho†,§,
Xinyu Xing‡, Adam Doupé†, Yan Shoshitaishvili†, Tiffany Bao†

†Arizona State University, ‡Pennsylvania State University, §Soongsil University
†{zengyhkyle, doupe, tbao, yans}@asu.edu, ‡{ychen, xxing}@ist.psu.edu, §haehyun@ssu.ac.kr

Abstract
The dynamic of the Linux kernel heap layout significantly
impacts the reliability of kernel heap exploits, making ex-
ploitability assessment challenging. Though techniques have
been proposed to stabilize exploits in the past, little scientific
research has been conducted to evaluate their effectiveness
and explore their working conditions.

In this paper, we present a systematic study of the kernel
heap exploit reliability problem. We first interview kernel
security experts, gathering commonly adopted exploitation
stabilization techniques and expert opinions about these tech-
niques. We then evaluate these stabilization techniques on 17
real-world kernel heap exploits. The results indicate that many
kernel security experts have incorrect opinions on exploita-
tion stabilization techniques. To help the security community
better understand exploitation stabilization, we inspect our
experiment results and design a generic kernel heap exploit
model. We use the proposed exploit model to interpret the
exploitation unreliability issue and analyze why stabilization
techniques succeed or fail. We also leverage the model to
propose a new exploitation technique. Our experiment indi-
cates that the new stabilization technique improves Linux
kernel exploit reliability by 14.87% on average. Combin-
ing this newly proposed technique with existing stabilization
approaches produces a composite stabilization method that
achieves a 135.53% exploitation reliability improvement on
average, outperforming exploit stabilization by professional
security researchers by 67.86%.

1 Introduction

The Linux kernel is an intricate interleaving of many com-
ponents, working together to power the modern computing
landscape. Analogous to user-space software, many of these
components dynamically allocate and deallocate memory
from a memory region created for this purpose: the “kernel
heap”. Unfortunately, in the presence of certain programming

∗First two authors contributed equally to this work.

mistakes, these components can mismanage their allocations,
leading to memory errors in the heap that can compromise
the security of other components and the whole kernel.

To take advantage of kernel heap memory errors and ex-
ecute a successful exploit, an attacker must make precise
predictions and effect careful control of kernel heap config-
uration, generally from an attacking process in userspace.
However, the intertwined design of relevant Linux kernel
components, such as the memory allocator and task sched-
uler, impacts actual runtime heap layout in complex and un-
predictable ways, often making it different from the layout
expected by the attacker. This unpredictability of kernel heap
layout leads to exploit failures and makes heap-based Linux
kernel exploitation notoriously unreliable.

On the one hand, this impact of complexity on kernel heap
exploitation reliability seems to help protect kernels from at-
tack. However, on the other hand, it impacts the identification
and classification of vulnerabilities as it makes vulnerability
reproduction difficult. Overwhelmed developers may deprior-
itize fixes for vulnerabilities considered to be unexploitable
or very unreliable to trigger in favor of other bugs. This gives
savvy attackers a window to exploit unfixed vulnerabilities
and cause damage to real-world systems.

In this paper, we aim to address this situation by studying
and developing techniques that increase the reliability of ker-
nel exploits, helping to properly demonstrate the impact and
criticality of the underlying vulnerabilities.

Previous research demonstrates kernel vulnerability ex-
ploitability by generating a test case that works with a non-
zero probability [21, 30, 42, 43]. On the contrary, little re-
search has been done to address the exploitation reliability
problem — if a kernel heap vulnerability is exploitable, then
how to achieve a high exploitation success rate and properly
understand the chance of a successful attack? While kernel
heap exploit stabilization techniques, including Heap Groom-
ing [35] and Defragmentation [44], exist in the wild, little
progress has been made to systematically determine their effi-
cacy or investigate how to apply these techniques to improve
exploit reliability. Instead, human analysts primarily rely upon

their personal expertise and intuition in assessing and adopt-
ing these techniques, which is ad-hoc and error-prone.

In this work, we present a systematic study on the kernel
heap exploit reliability problem. Our study aims to answer the
following research questions: (1) What are the common kernel
heap exploit stabilization techniques in the wild? (2) What
are expert opinions on using these techniques, and what are
the real-world evaluation results? Are these expert opinions
correct? (3) What are the reasons that a stabilization technique
succeeds/fails? (4) How to improve kernel exploit reliability?

To answer these questions, we conducted a hybrid study
with both qualitative and quantitative analyses. We inter-
viewed 11 kernel exploitation experts, collecting 5 stabiliza-
tion techniques along with experts opinions about these tech-
niques. We then implemented exploits for 17 real kernel heap
vulnerabilities and measured the reliability improvement asso-
ciated with each stabilization technique. Finally, we compared
the experimental results against the expert opinions and inves-
tigated the factors contributing to exploit unreliability.

In our measurements, we found that expert opinions are
incorrect in many kernel heap exploit scenarios. For exam-
ple, many experts considered Defragmentation to improve the
reliability of all exploits, but we discovered that Defragmen-
tation is effective only for heap-based out-of-bound access
(OOB) vulnerabilities, but not for use-after-free (UAF) and
double-free (DF) vulnerabilities. Furthermore, we discovered
that the Defragmentation technique actually reduces exploit
reliability if misused in UAF or DF vulnerability exploitation.

To better understand the kernel heap exploit reliability prob-
lem, we devised a generic kernel heap exploit model that
illustrates contributing factors and explains why each tech-
nique succeeds or fails to improve exploit reliability. Inspired
by our model, we created a novel technique, called Context
Conservation, to improve exploitation reliability for DF and
UAF vulnerabilities. Our evaluation shows that the technique
improves exploit reliability by 14.87% on average. When
Context Conservation is combined with existing exploit stabi-
lization techniques, this composite method improves exploit
reliability by an average of 135.53%. Furthermore, it outper-
forms the exploits crafted by human experts by 67.86%.

In summary, this paper makes the following contributions:
• A systematic study on the existing kernel heap exploit

stabilization techniques commonly used in practice.
• The design of a general kernel heap exploit model that

explains the exploit reliability problem.
• The development and evaluation of a sole technique,

named Context Conservation, and a technique combina-
tion that both significantly improve kernel exploit relia-
bility.

We release the implementation and the experiment dataset1

to foster future research. We believe the artifacts will benefit

1https://github.com/sefcom/KHeaps

the community by helping to stabilize future kernel exploits
and to evaluate future exploit stabilization techniques.

2 Background

In this section, we introduce the technical backgrounds related
to kernel heap exploit reliability problem.

2.1 Exploit-related Linux Kernel Design

Kernel Memory Allocator. Linux kernel uses SLUB allo-
cator for managing the kernel heap. The allocator creates a
cache storage unit for kernel objects of the same size. Each
cache maintains a list of pages, and each page is called a slab.
When a fresh slab is created, it is partitioned into multiple
slots of the same size. The slots are then chained together,
forming a per-slab freelist. While the per-slab freelist will be
shuffled and become randomized after a few heap operations,
the layout of a fresh freelist is deterministic.

At the runtime, each CPU operates on different slabs to
avoid contention. The freelist of the slab used by a CPU is usu-
ally referred to as a per-CPU freelist. When a CPU allocates
an object, it takes one slot from its per-CPU freelist for the
object. When an object is released, the allocator determines
the corresponding slab, and returns the object’s slot back to
the slab’s per-slab freelist.
Task Scheduler. A kernel task scheduler decides the execu-
tion order of running processes. Linux kernels use Completely
Fair Scheduler (CFS) [1] to schedule processes, which sched-
ules processes in the granularity of threads and calls them
tasks. It keeps track of all tasks ready to run in a runqueue.

In multi-core systems, each CPU maintains its per-CPU
runqueue and records the workload in the runqueue. When the
workloads on CPUs are imbalanced, the kernel will migrate
tasks from a heavy-workload runqueue to a light-workload
runqueue. Generally, the busier the system is, the more fre-
quently task migration occurs.
Context Switch. One CPU can execute only one task at a
time. A context switch occurs when the task scheduler tells a
CPU to stop the current task and run another task to simulate
concurrent execution. When it happens to a userspace process,
the process will be stopped and wait to be resumed.

Since Linux kernel is preemptive, a context switch can
potentially occur at any moment to a running process, which
effectively introduces a long-time sleep to the process.

2.2 Exploitation Methods

In general, there are four kernel heap exploit methods:
Out-of-bounds Object (OOB-Object) Exploits. The
OOB-Object exploits are resulted from heap object overflow
vulnerabilities. The exploits tamper the critical fields in the
adjacent object (i.e., target object) and hijack kernel control

https://github.com/sefcom/KHeaps

flow. For example, it can overwrite function pointers or hijack
virtual table pointers adjacent to the overflowed object.
Out-of-bounds Freelist (OOB-Freelist) Exploits. An-
other way to exploit OOB vulnerabilities is to hijack the slab
freelist by overwriting the list metadata stored in the adjacent
freed slot (i.e., target slot). This approach drives the kernel
to chain an adversary-controlled address into the slab freelist
for allocating kernel objects in the desired memory region.
Use-after-free (UAF) Exploits. An UAF exploit occurs in
two steps. First, it releases a vulnerable object and leaves the
freed slot on the kernel heap using the vulnerability. Then,
he/she tricks the kernel to write adversary-controlled data on
the freed slot, tampering with critical fields (e.g., pointers, list
metadata). Using the same approach as in OOB exploitation,
the adversary can obtain control over kernel execution.
Double-free (DF) Exploits. When a double-free vulnera-
bility is triggered, the kernel heap is corrupted with the same
slot appearing twice in the freelist, allowing an adversary to
hijack the control flow. First, the adversary allocates a victim
object at the target slot. Then, he/she can allocate another
object with desired data at the same slot, overwriting the vic-
tim object. The second allocation overwrites critical fields in
the victim object. As a result, the adversary can hijack the
program counter in the same approach as described above.

2.3 Exploitation Unreliability Issue

The kernel heap is used at runtime by different kernel com-
ponents, such as processes, interrupts, softirq, etc. In kernel
heap exploitation, these components could impose intensive
heap usages, making it unreliable to allocate objects at the
desired slot. Even worse, a task migration may occur during
exploitation. Due to the per-CPU freelist design, the migra-
tion implicitly changes the freelist in use, which can cause
the failure of exploitation (§6.1).

Several techniques are commonly used to improve kernel
heap exploit reliability in practice. For example, Defragmen-
tation [44] improves exploit reliability by allocating many
objects to drain freed slots and force new slab creation. Since
the new slab’s layout is predictable, the exploit can locate
target slots precisely, thus more likely to succeed. In our pa-
per, we call such techniques kernel heap exploit stabilization
techniques, or exploit stabilization techniques for short.

Although the exploit stabilization techniques are preva-
lent in practice, little research has been done to study these
techniques. The security community not only lacks the under-
standing of why each of the exploit stabilization techniques
improves exploit reliability but also fails to mention whether
the techniques are effective under all conditions and, if not,
what is the condition to apply an exploit stabilization tech-
nique. As such, security analysts use these techniques in an
ad-hoc way which, as we will show in the later sections, could
result in no improvement or even a negative impact on the
kernel heap exploit reliability.

3 Overview

Problem Statement. We define the kernel heap exploit
reliability problem as the issue that a kernel heap exploit can-
not work reliably. While previous works [21, 30, 42, 43] seek
for solutions to generate exploits that work with a positive
success rate (e.g., an exploit works once out of one hundred
attempts), our paper focuses on the problem of how to help
these generated exploits gain higher success rates.
Approach. We design a hybrid approach to study the ker-
nel heap exploit reliability problem. Our approach includes
both qualitative human subject studies and quantitative ex-
periments. We first conduct a qualitative study on security
experts, through which we identify commonly-used kernel
heap exploit stabilization techniques and experts’ opinions
on each technique (§4). Next, we evaluate the stabilization
techniques on real-world Linux kernel vulnerabilities and
measure the reliability of the corresponding exploits with and
without each technique (§5). Based on the experiment results,
we identify the experts’ misconceptions (§5.3), investigate
the factors impactful on exploit reliability (§5.4), and build
a generic model to explain the kernel heap exploit reliabil-
ity problem (§6). Finally, we use the model to explore novel
techniques and thus boost exploit reliability (§7).

4 Kernel Heap Exploit Reliability Interview

The interview aims to (1) identify techniques commonly used
by experts to improve exploit reliability, (2) collect experts’
opinions regarding the techniques, and (3) gather implemen-
tation suggestions from experts for later empirical evaluation.
As the interview involves human subjects, we submitted our
experiment to the IRB and received an exemption.

To recruit participants, we invited security experts to par-
ticipate in our study and screened the experts as experiment
participants by their experience in Linux kernel exploitation.
In total, we recruited 11 participants. The participants consist
of 4 professional red-team exploit developers and 7 kernel
security researchers from academic institutions. All of these
participants have more than 2 years of kernel exploit expe-
rience. They developed 24 end-to-end Linux kernel exploits
on average. We believe this group of experts has adequate
experience for our study.

Our interview survey provided a list of exploitation sta-
bilization techniques — we believe — security researchers
commonly adopt. As depicted in Table 1, the list contains
5 exploitation stabilization methods. They are summarized
from public exploit writeups, broadly available exploit imple-
mentation, and tech forums. Following each technique, we
also specified different conditions under which the technique
may take effect properly. These working conditions were pro-
vided to participants for selection as part of the survey. For
some techniques, our survey also asks participants to compare

Technique Empirical Results # correctness

Defragmentation

1-1. Works for UAF, DF, and OOB 7 7
1-2. Only works for OOB 3 3
1-3. Only works when the workload of the target machine is light 4 7
1-4. Most effective among all techniques 1 7
1-5. Even if this technique does not improve reliability, at least, it doesn’t harm reliability 1 7
1-6. I don’t know this technique 1 N/A
1-7. I have no clue how to use this technique 0 N/A

Heap Grooming

2-1. Only works for OOB 2 3
2-2. Only works when the workload of the target machine is light 3 7
2-3. More useful than Defragmentation 1 3
2-4. This technique is as good as Defragmentation 1 7
2-5. I don’t know this technique 7 N/A
2-6. I have no clue how to use this technique 1 N/A
3-1. Works for UAF, DF, and OOB 7 7

Single-Thread 3-2. Most effective among all techniques 1 7
Heap Spray 3-3. I don’t know this technique 1 N/A

3-4. I have no clue how to use this technique 2 N/A
4-1. Works for UAF, DF, and OOB 7 7
4-2. The single-thread implementation is as good as the multiple-process implementation 1 7

Multi-Process 4-3. The single-thread implementation is better than the multiple-process implementation 2 7
Heap Spray 4-4. Most effective among all techniques 1 7

4-5. I don’t know this technique 1 N/A
4-6. I have no clue how to use this technique 2 N/A

CPU Pinning

5-1. Effective only when the threads/processes for exploit are pinned to idle CPUs 3 7
5-2. Heavy workload will influence the effectiveness 1 3
5-3. I don’t know this technique 8 N/A
5-4. I have no clue how to use this technique 0 N/A

Table 1: Summary of security experts’ opinions on exploitation stabilization techniques. # column indicates the amount of
participants holding the corresponding opinion. In the correctness column, 7 means the claim is inconsistent with our systematic
measurement results whereas 3 implies consistency.

their effectiveness with each other. The list of open questions
in the survey can be found in Figure 2 in the Appendix.

Since the list of exploit stabilization techniques and their
working conditions may be limited by our knowledge, the
survey is designed to allow the participants to complement
the list. Suppose participants have never heard about a specific
exploitation method listed in the survey or have no clue about
the condition under which the technique could be applied.
In that case, the survey also allows them to specify these
situations. In Figure 2, we present the full survey questions
used in our user study.

Following the survey questions, we interviewed each par-
ticipant. In the interview, we provided the technical details
of 17 real-world kernel vulnerabilities to the participants. As
discussed Section 5, these vulnerabilities represent a corpus
of test cases that we use to evaluate exploit stabilization tech-
niques. We asked whether the stabilization techniques present
in the survey could be applied to improve exploitation relia-
bility for each vulnerability. If so, how they would implement
and predict the reliability of the implemented exploit in differ-
ent workload settings. More specifically, we asked our human
subjects the implementation details, including what system
calls to use, whether to create separate threads or fork multiple
processes for executing the technique code, etc.

Recall that part of our research is to evaluate the effective-
ness of the stabilization techniques and then compare these
security experts’ intuitions with our experiment results. As a

result, our user study also includes a post-survey interview.
In this interview, we presented and shared our experiment
discovery with the participants. We asked whether our experi-
ment discovery helped them better understand a stabilization
technique if they did not properly use it. We also asked if our
discovery corrected their opinion on an exploitation stabiliza-
tion technique if their previous answer mismatched with our
evaluation result. In this way, we can rule out the possibil-
ity that participants’ opinion misalignment results from their
misunderstanding of our survey questions.

4.1 Stabilization Techniques

Through our survey, we confirmed the following stabilization
techniques are those commonly adopted. All the exploit stabi-
lization methods are known by a subgroup of the participants.
In the following, we briefly describe these commonly-adopted
stabilization techniques.
1. Defragmentation allocates a large number of objects in

the same cache as the vulnerable object so that it fills up
all the half-full slabs in the cache, forcing the allocator to
create new slabs.

2. Heap Grooming creates a heap layout where the vulnera-
ble object is right next to a victim object. Such layout is
beneficial for some of the heap exploits. To achieve the
goal, Heap Grooming initializes the kernel heap by allo-
cating many victim objects and then swapping one victim

object with the vulnerable object by performing quick free
and malloc operations.

3. Single-Thread Heap Spray occupies the desired slot by
allocating many objects. Single-Thread Heap Spray is per-
formed in the same thread or a separate thread for better
modularization. It is used after triggering a UAF/DF vul-
nerability or before triggering a OOB vulnerability.

4. Multi-Process Heap Spray, similar to Single-Thread
Heap Spray, aims to occupy the desired slot for an ex-
ploit. The difference lies in the implementation approaches.
Single-Thread Heap Spray employs only one thread,
whereas Multi-Process Heap Spray forks multiple pro-
cesses for allocating payload objects.

5. CPU Pinning attaches the execution of exploit thread-
s/processes to a specific CPU to prevent task migration. It
works by invoking sched_setaffinity system call.

4.2 Interview Responses
Table 1 presents the participants’ opinions on each stabiliza-
tion technique. The number in the third column indicates how
many participants provide that corresponding response in the
survey. Below, we summarized the responses.
• A majority of the experts (roughly half or more than

half of the participants) share the same opinion on stabi-
lization techniques like Defragmentation, Single-Thread,
and Multi-Process Heap Spray. That is, these techniques
could increase the reliability for exploits targeting arbitrary
heap-based vulnerabilities. Although most security experts
broadly acknowledge this opinion, its correctness lacks sys-
tematic evaluation.

• While all the experts have 2 years of experience in develop-
ing many end-to-end exploits for Linux kernel vulnerabili-
ties, most are not familiar with the exploitation stabilization
techniques like Heap Grooming and CPU Pinning. This
finding aligns with our intensive efforts on the Internet.
Both techniques are rarely mentioned or adopted in pub-
licly available exploits and writeups, as shown in Table 6 in
Section 7.2. It indicates that the knowledge gap exists in the
use of some exploitation stabilization techniques. There is
a need to unveil the techniques, explore their effectiveness,
and summarize the working conditions.

• A small subgroup of security experts holds opposite opin-
ions on some exploitation stabilization techniques. For ex-
ample, three participants deem Defragmentation takes ef-
fect only for OOB vulnerabilities. On the contrary, the ma-
jority of the participants believe this stabilization technique
should work for any heap-based vulnerabilities. This con-
tradictory opinion indicates that the misunderstandings of
these commonly used techniques exist within the kernel ex-
ploit experts. A systematic experiment should be conducted
to conclude the condition under which the corresponding
technique is effective.

Cache Idle Busy

kmalloc-8 0.02 0.04
kmalloc-16 0.01 0.43
kmalloc-32 1.13 31716.30
kmalloc-64 0.70 31728.44
kmalloc-96 0.06 1.62
kmalloc-128 0.65 31416.34
kmalloc-192 0.35 11.44
kmalloc-256 1.13 57827.32
kmalloc-512 0.06 26152.33
kmalloc-1024 0.25 41844.99
kmalloc-2048 0.01 10460.07
kmalloc-4096 1.61 21039.32
kmalloc-8192 0.00 0.04

Table 2: The number of background heap operations each
second on each CPU under different workload settings.

5 Evaluating Stabilization Techniques

In this section, we first introduce how we evaluate the ef-
fectiveness of exploit stabilization techniques. Second, we
present our evaluation results. Third, we compare our discov-
ery from evaluation with human experts’ opinions on exploita-
tion stabilization techniques. Last but not least, we manually
analyze the runtime behavior of each exploit and thus sum-
marize the factors influencing exploitation reliability.

5.1 Experiment Setup
To evaluate the exploit stabilization technique, we set up a
comprehensive experiment. First, we collect and construct a
dataset that consists of public exploits for real-world vulnera-
bilities. Second, we craft exploit variants equipped using each
stabilization technique for each vulnerability by following
the implementation suggestion provided by the interviewed
participants. Third, we develop an evaluation platform, run
the public exploits and the corresponding variants on that
platform, and thus measure the exploitation success rates of
each exploit. Last, we compare the success rates and ana-
lyze the experiment results. In the following, we detail these
experiment setups.
Dataset. We search the Internet and form a dataset con-
taining 17 Linux kernel vulnerabilities and corresponding
public exploits. The vulnerabilities in our dataset cover all
common vulnerability types on the kernel heap. This dataset
is the most extensive corpus of working Linux kernel exploits
to the best of our knowledge. As such, we consider it a rea-
sonable dataset for stabilization technique evaluation. For
the details of vulnerability/exploit selection, readers could
reference Appendix-A.
Exploit Variants. Based on the exploits gathered, we con-
struct baseline exploits for all 17 vulnerabilities. These base-
line exploits are not enhanced with any stabilization tech-
niques. From these baseline exploits, we introduce the sta-

Type CVE Baseline Defragmentation Heap Single-Thread Multi-Process CPU PinningGrooming Heap Spray Heap Spray

In Idle State
OOB 2017-7533 20.43% 49.03% [+] N/A 98.31% [+] 99.49% [+] 28.80% [+]
OOB 2017-7184 33.51% 99.46% [+] 100.00% [+] 46.37% [+] 96.74% [+] 52.54% [+]
OOB 2016-6187 32.89% 99.63% [+] N/A N/A N/A 32.71% [−]
OOB 2010-2959 22.09% 99.37% [+] 99.89% [+] 56.63% [+] 57.29% [+] 21.54% [−]
OOB 2017-7308 0.04% 0.32% [+] N/A 0.00% [−] 5.28% [+] 0.10% [+]
UAF 2018-6555 89.98% 77.54% [−] N/A 99.68% [+] 100.00%[+] 94.08% [+]
UAF 2016-8655 96.06% 94.28% [−] N/A 99.46% [+] 99.62% [+] 98.84% [+]
UAF 2017-15649 13.82% 12.52% [−] N/A 58.54% [+] 99.88% [+] 99.70% [+]
UAF 2016-4557 99.34% 99.03% [−] N/A 100.00%[+] 100.00%[+] 99.43% [+]
UAF 2017-8824 97.64% 0.10% [−] N/A 97.92% [+] 99.24% [+] 98.60% [+]
UAF 2016-0728 1.48% 6.64% [+] N/A 76.10% [+] 99.94% [+] 3.34% [+]
UAF 2017-10661 31.98% 32.16% [+] N/A 53.76% [+] 84.48% [+] 69.72% [+]
UAF 2016-10150 0.74%∗ 1.02%∗ [+] N/A 1.14%∗ [+] 99.72% [+] 99.56% [+]
UAF 2017-11176 92.17% 11.86%∗ [−] N/A 99.89% [+] 99.91% [+] 97.31% [+]
DF 2017-2636 95.96% 22.58% [−] N/A 99.62% [+] 99.44% [+] 98.06% [+]
DF 2017-6074 98.50% 84.98% [−] N/A 98.80% [+] 92.18% [−] 98.98% [+]
DF 2017-8890 51.96% 0.66% [−] N/A 67.80% [+] 72.82% [+] 81.18% [+]

Statistics (#[+]–#[−]–#[=]) 8-9-0 2-0-0 15-1-0 15-1-0 15-2-0

In Busy State
OOB 2017-7533 7.86% 23.63% [+] N/A 74.57% [+] 80.66% [+] 18.23% [+]
OOB 2017-7184 5.37% 25.00% [+] 51.11% [+] 35.80% [+] 73.63% [+] 6.83% [+]
OOB 2016-6187 2.49% 9.89% [+] N/A N/A N/A 4.94% [+]
OOB 2010-2959 5.83% 20.09% [+] 46.60% [+] 18.37% [+] 44.06% [+] 10.03% [+]
OOB 2017-7308 0.00% 0.00% [=] N/A 0.00% [=] 0.18% [+] 0.00% [=]
UAF 2018-6555 61.92% 61.26% [−] N/A 81.74% [+] 96.38% [+] 73.66% [+]
UAF 2016-8655 0.28% 0.44% [+] N/A 59.50% [+] 99.68% [+] 0.34% [+]
UAF 2017-15649 18.34% 16.64% [−] N/A 37.16% [+] 99.30% [+] 92.02% [+]
UAF 2016-4557 22.80% 17.31% [−] N/A 94.34% [+] 99.29% [+] 18.20% [−]
UAF 2017-8824 93.70% 0.34% [−] N/A 95.00% [+] 98.82% [+] 98.66% [+]
UAF 2016-0728 0.14% 0.18% [+] N/A 33.66% [+] 99.70% [+] 0.06% [−]
UAF 2017-10661 0.18% 0.14% [−] N/A 28.90% [+] 69.54% [+] 0.24% [+]
UAF 2016-10150 47.62% 46.08% [−] N/A 39.58% [−] 63.00% [+] 77.70% [+]
UAF 2017-11176 2.06% 1.77% [−] N/A 40.86% [+] 92.40% [+] 4.03% [+]
DF 2017-2636 93.26% 18.74% [−] N/A 97.80% [+] 99.20% [+] 98.28% [+]
DF 2017-6074 66.16% 49.80% [−] N/A 66.84% [+] 75.52% [+] 64.38% [−]
DF 2017-8890 6.14% 1.44% [−] N/A 20.32% [+] 44.00% [+] 9.24% [+]

Statistics (#[+]–#[−]–#[=]) 6-10-1 2-0-0 14-1-1 16-0-0 13-3-1

Table 3: Performance of reliability techniques in idle and busy systems. N/A indicates that the technique cannot be applied to the
vulnerability. [+] means improvement over baseline, [−] is for degradation, and [=] denotes no change. Some exploits suffer
from timeout issue. For these exploits, we only include exploits that finish execution in 5 minutes for success rate calculation.
The numbers may not reflect their real success rates. These exploits are marked with [∗].

bilization technique individually. Due to the space limit, we
describe the detail of generating baseline exploits and exploits
armed with each stabilization technique in Appendix-A.

Experiment Design. We build an evaluation platform to
ease the process of measuring the success rate of exploits.
With the platform, we can automatically run all exploits for
vulnerabilities and collect the panic logs to determine whether
the exploits succeed or not. Moreover, the platform can eval-
uate exploits under either idle or busy systems to measure
system workload’s influence on exploit reliability. The busy

system is simulated by running Apache benchmark from
Phoronix Test Suite [16] on the target system. The benchmark
workload spawns more than 10 processes and 150 threads,
constantly occupying 81.24% CPU usage on all CPUs and im-
posing intensive pressure on the kernel heap. The background
heap operations (kmalloc and kfree calls) on idle systems and
busy systems are compared in Table 2.

For each exploit, we run it 5000 times and then compute
the success rate. In our experiment, we deem an exploit com-
pletes its execution if it succeeds or triggers a kernel panic.

This practice follows the convention in the kernel exploit de-
velopment community [4, 6, 10] and avoids unfair advantages
to exploits that include repeated execution logic [8, 9, 11].
We use the success rate of exploits as the indicator of their
reliability. We calculate the average value of 5000 times and
present them in Table 3.

To perform the evaluation experiment, we run the platform
on 4 identical servers, each equipped with Intel(R) Xeon(R)
CPU E5-2670 v2 @ 2.50GHz (20 cores in total) and 252G
memory, running Ubuntu 18.04 LTS. For each vulnerabil-
ity, we re-introduce it into v4.15 Linux kernel, compile the
corresponding kernel and disk image and run the system in
QEMU 5.0.0 virtual machine (VM). The VM is configured in 4
different settings, including 2 CPUs + 2GB RAM, 2 CPUs
+ 4GB RAM, 4 CPUs + 2GB RAM, and 4 CPUs + 4GB
RAM. We did not perform experiments on more CPU/RAM
settings for two reasons. First, running experiments with more
resources is expensive. Second, we did not observe significant
changes in technique effectiveness under different CPU/RAM
settings. As a result of the observation, we present only the
experiment results on the VM with the configuration of 2
CPUs + 2 GB RAM. For the results obtained from other
configurations, readers could refer to Appendix-B.

5.2 Effectiveness Evaluation

Table 3 shows the experiment results. As we can observe,
for all vulnerabilities, there is at least one stabilization tech-
nique that could successfully improve the reliability of its
corresponding exploit. Among all exploit stabilization tech-
niques, Defragmentation demonstrates the weakest capability
in improving exploit reliability. It improves exploit reliability
only for 8 and 6 vulnerabilities in the idle and busy settings,
respectively. This observation indicates that the stabilization
techniques commonly used are generally effective.

While Defragmentation is the least effective in terms of the
number of exploits it stabilizes, similar to Heap Grooming,
Single-Thread Heap Spray, and Multi-Process Heap Spray, it
could significantly improve exploit reliability for OOB vulner-
abilities. The reason is that these four techniques can reduce
the dynamics of the kernel heap and create a clean heap layout
for exploitation. In our experiment, no technique dominates
the reliability of OOB exploits. While Defragmentation and
Heap Grooming show dominant performance in idle systems,
their success rates decrease in the busy setting. In contrast,
the reliability of Multi-Process Heap Spray stays relatively
high even in the busy setting for OOB exploits.

For UAF and DF vulnerabilities, the most effective tech-
niques are Single-Thread Heap Spray and Multi-Process Heap
Spray in both idle and busy settings. Take CVE-2016-0728 as
an example. The success rate of baseline exploit is 1.48% in
idle systems. Single-Thread Heap Spray and Multi-Process
Heap Spray can raise the success rate to 76.10% and 99.94%,
respectively. Recall that exploiting UAF and DF vulnerabil-

ities requires adversaries to take over the freed slot on the
heap. Heap spray allocates many spray objects, increasing the
possibility of successful occupation and thus improve reliabil-
ity. In most cases of our experiment results, we observe that
Multi-Process Heap Spray outperforms Single-Thread Heap
Spray by a vast margin. This is due to the former’s influence
on both scheduler and CPU affinity. We will provide a more
detailed discussion in Section 6.1.

Interestingly, though Multi-Process Heap Spray shows sig-
nificant exploit reliability improvement in both idle and busy
systems, it negatively impacts one exploit in the idle setting.
This hints at other complex underlying factors.

Comparing the success rate of exploits in idle and busy
settings, we observe that the workload of the target system
does influence the effectiveness of reliability techniques. Take
the technique CPU Pinning as an example. In idle setup, 9 out
of 17 exploits achieve more than 90% success rate. However,
in the busy setup, this number decreases to three. Even so, we
still believe the exploit stabilization techniques are effective.
This is simply because, even though busy workload degrades
exploit reliability in general, each technique’s impact on ex-
ploits is generally consistent under different workloads.

5.3 Comparison with Expert Opinions

By comparing the results in Table 1 with those in Table 3, we
observe that experts have the following incorrect opinions on
exploitation stabilization techniques.
Misconception 1. As depicted in Table 1, a majority of
participants believe Defragmentation could improve reliabil-
ity for exploits against arbitrary heap-based vulnerabilities
(i.e., UAF, DF, and OOB). However, our experiment result
misaligns with their opinions. As is shown in Table 3, in both
idle and busy settings, the Defragmentation technique is more
effective for OOB vulnerabilities than other types of vulner-
abilities like DF and UAF. Among all 17 vulnerabilities, all
five OOB exploits benefit from the technique significantly. In
contrast, only three out of nine UAF exploits benefit from it.
None of the DF exploits with Defragmentation demonstrates
improvement. As such, we conclude that the opinions of many
experts on Defragmentation are incorrect.
Misconception 2. For almost all techniques, some inter-
view participants believe that heavy workload will signifi-
cantly harm their effectiveness (i.e., 1-3, 2-2, 5-2 in Table 1).
Intuition suggests that increased workload introduces more
opponent processes, competing with the exploit threads/pro-
cesses for CPU time and kernel heap usage. As a result, it
is more challenging to perform heap operations in a non-
interference fashion.

Our experiment results generally confirm this hypothesis.
All techniques suffer success rate degradation in busy systems.
However, stabilization techniques still improve the success
rate significantly. For example, though Multi-Process Heap
Spray in busy systems does not perform as well as in idle

systems, the success rate still stays high for almost all vulner-
abilities. This result indicates that increased workload does
influence the effectiveness of techniques but is not a killer.
Misconception 3. Regarding the question of which tech-
nique is the most effective, participants have totally different
opinions (i.e., 1-4, 2-3, 2-4, 4-4 in Table 1). In fact, there is no
universal answer to this question, and the most effective tech-
nique varies case by case. Take CVE-2017-7533 as an example.
The most effective technique for the reliability improvement
of this technique is Multi-Process Heap Spray, no matter
whether the workload is light or heavy. For CVE-2017-7184 in
idle systems, the optimal choice becomes Heap Grooming.

Recall that in Section 4, there are two approaches to im-
plementing heap spray. One is to spray objects in one thread
after triggering the vulnerability. The other is to fork multiple
processes dedicated to object allocation. Opinions diverge
on which implementation is more effective (i.e., 4-2, 4-3 in
Table 1). Our experiment result suggests that Multi-Process
Heap Spray outperforms Single-Thread Heap Spray for al-
most all cases except CVE-2017-6074 with a light workload.
Other Misconceptions. The experiment refutes opinions 1-
5 in Table 1. We observe that Defragmentation harms exploit
reliability for five vulnerabilities. This hints that the outcome
is not always as expected by the exploit developers.

Some participants agree that the target CPU should be
idle for CPU Pinning to be effective (5-1 in Table 1). This
statement is incorrect since CPU Pinning demonstrates sub-
stantial reliability improvement in the busy setting, where
all CPUs are busy. In our investigation, we observe that the
crucial factor of CPU Pinning is that it ensures all exploit
processes/threads are all attached to the same CPU. Recall
that in Section 2, the allocator has per-CPU feature which
allocates/frees the slot from/to the local freeslit. Attaching
all processes/threads to the same CPU ensures that heap ma-
nipulation takes place on the same freelist.

5.4 Summary of Exploit Unreliability Factors

For each vulnerability, we also monitor the runtime behaviors
of its different exploits. In this way, we can observe internal
kernel operations when running each exploit and thus compare
the behavior difference accordingly. From our comparison, a
better understanding of the exploitation unreliability could be
obtained. Here, we summarize our understanding or, in other
words, the factors attributive to exploit unreliability.
Unknown Heap Layout. Before the execution of an ex-
ploit, other processes may shuffle the freelist in each slab and
destroy their linear layouts. As a result, when the exploit starts
its execution, it faces an unpredictable heap layout.

Unknown heap layout has a detrimental effect on the reli-
ability of OOB exploits. As briefly discussed in Section 2.2,
OOB exploits aim to allocate a victim object next to a vulner-
able object for exploitation. Without knowing the state of the

freelist in use, it is difficult to obtain the desired heap layout
useful for successful exploitation.

In the typical exploit development process, security re-
searchers usually assume an initial heap layout and develop
exploits based on the assumption. If the heap layout does not
match the assumption during runtime, the exploit is likely
to fail. This assumption on the initial heap layout introduces
randomness to exploit reliability.
Unwanted Task Migration. Although seemingly harmless,
unexpected task migration contributes to exploit reliability
degradation. Task migration occurs when the kernel tries to
balance workloads across CPUs. It forces a process to run
on a different CPU, which effectively causes it to operate
on another freelist because of the per-CPU freelist feature
described in Section 2.1.

This inconsistency in the use of freelists can fail exploits.
For example, a UAF exploit process allocates the vulnerable
object on CPU-A and then gets migrated to CPU-B. When
it frees the vulnerable object, the slot goes back to CPU-
A’s freelist. However, its payload object will be allocated
from CPU-B’s freelist, leading to unsuccessful exploitation.
If the slot is acquired by a process running on CPU-A, the
unexpected object overwrite can lead to kernel panic.

In short, unwanted task migration creates inconsistency in
the use of per-CPU freelists, leading to exploit unreliability.
Unexpected Heap Usage. Modern multitasking kernels
use context switches to simulate concurrency. When a task is
switched out of the CPU, it waits for the next time slice.

In kernel heap exploits, some heap operations should be
done atomically to achieve successful exploitation. A typi-
cal example is freeing the vulnerable object and reoccupying
the freed slot in a UAF exploit. However, suppose a context
switch happens after the object is freed and the next task occu-
pies the target slot before the exploit process gets scheduled
again. In that case, the exploit can never reacquire the target
slot, leading to exploit failure.

In other words, unexpected heap usage may destroy an ex-
pected heap layout during runtime and introduce unreliability.
Unpredictable Corruption Timing. In the Linux kernel,
many non-essential operations are delayed for the sake of
performance. These operations will be scheduled by different
components of the Linux kernel: softirq, workqueue, RCU,
etc. Without access to the internal runtime information of
these components, an exploit process cannot precisely predict
when a specific operation will take place.

When a vulnerability involves these delayed operations,
and more specifically, heap corruption happens inside a de-
layed operation, there is a time delay between vulnerability
triggering and the heap operation taking effect. This poses
difficulty on when to perform exploitation after the vulnera-
bility is triggered. The common solution is to sleep for some
time, making sure the delayed heap operation takes effect.
However, this leaves more time for unexpected heap usage to
happen and introduces unreliability.

6 Kernel Heap Exploit Model

Based on the discovered unreliability factors and the ker-
nel attacks, we abstract the kernel heap exploit process as
a Kernel Heap Exploit Model. This model explains the pro-
cess of kernel heap exploitation, spanning from the moment
that an exploit starts to interact with a vulnerable system to
the moment that the exploit successfully triggers an attacker-
controlled payload. It also includes all the possible failures
occurring in the middle of the process. This model helps fur-
ther zoom in on the cause of failure of a kernel heap exploit.
In addition, it helps further delve into the reasons why a ker-
nel heap stabilization technique succeeds or fails to improve
kernel heap exploit reliability. Last but not least, it also helps
instruct the development of new stabilization techniques or
technique combinations that mitigate the unreliability issues
for different types of kernel heap exploits.

As shown in Figure 1, the Kernel Heap Exploit Model is
composed of 4 following stages:
1. Context Setup. An exploit prepares the necessary con-

text to trigger a targeted vulnerability, e.g., allocating a
vulnerable object. Some kernel heap exploit stabilization
techniques can be used in this stage to mitigate the unrelia-
bility factors (e.g., unknown heap layout) and thus increase
the exploit reliability.

2. Vulnerability Effect Delay. An exploit triggers the vulner-
ability by the end of context setup, but the heap layout may
not change immediately. For example, for UAF and DF ex-
ploits, after an object free operation is invoked, the Linux
kernel may delay the operation due to read-copy update
(RCU) [15]. We call the period from when a vulnerabil-
ity is triggered to when the corresponding heap operation
takes effect vulnerability effect delay. Specifically, at this
stage, the vulnerable object will be freed for UAF and
DF exploits, the vulnerable object will be overflowed for
OOB-Object exploits, and the freelist will be overwritten
for OOB-Freelist exploits.

3. Allocator Bracing. After the heap operation takes effect,
the memory allocator may transit to a corrupted state, espe-
cially for UAF, DF, and OOB-Freelist exploits. In this case,
the exploit must restore the allocator from the corrupted
state before the kernel detects the anomaly and turn panic,
thus failing the exploit.

4. Final Preparation. At this stage, the unstable heap ma-
nipulation is finished. Some exploits will perform final
preparations (e.g., modifying payload objects) to obtain
control flow hijacking primitives.

There are two following types of critical phrases that may
contain unreliability factors:

1. Slot-critical Phase. This phase starts when a target slot is
open and ends when the slot is filled by the target object.
In this phase, the target slot is at risk of being occupied by
other objects from other tasks.

The slot-critical phase takes place at different stages for
different types of exploits. For UAF and DF exploits, this
phase happens after the vulnerability-triggering operations
take effect, as the vulnerable object will be freed and
other tasks may compete for the slot. For OOB-Object
exploits and OOB-Freelist exploits, this phase happens
before the vulnerability-triggering operations take effect,
because OOB exploits allocate vulnerable objects before
the vulnerability-triggering operations take effect.

2. Allocator-Critical Phase. In this phase, the allocator is
in a corrupted state due to the operations of an exploit.
This is critical to exploitation success because the kernel
may detect the anomaly and panic when it tries to use the
allocator. A successful exploit should restore the allocator
from a corrupted state before it is caught by the kernel.
Similar to the slot-critical phase, this phase also occurs at
different stages for different types of exploits. For DF ex-
ploits, it happens at the same stage of the slot-critical phase
because releasing a vulnerable object twice will corrupt the
memory allocator. For UAF exploits, the allocator-critical
phase occurs after the object release operation takes effect
if the exploits tamper with the freelist. For OOB-Freelist,
this phase happens after the slot-critical phase because
overwriting the freelist will cause the allocator corruption
issue. For OOB-Object, the allocator-critical phase does
not exist because overflowing to the adjacent object does
not invoke the memory allocator.

6.1 Exploit Stabilization Success and Failure
Using the Kernel Heap Exploit Model, we revisit the exper-
iment results and investigate the success or failure of each
technique. We discover that each technique improves exploita-
tion reliability by mitigating at least one unreliability factor
(Section 5.4), which suggests the comprehensiveness of the
factor synthesis. In this subsection, we present the investiga-
tion result for each stabilization technique.
Defragmentation. This technique is used at the context
setup stage when the kernel heap layout is unknown to the
exploit. It drains the current per-CPU freelist and fills all
half-full slabs to force the creation of a fresh freelist with
a deterministic layout. Since OOB exploits require victim
objects adjacent to the vulnerable objects, a deterministic
freelist layout significantly increases the possibility of placing
both objects at the right spots and improves exploit reliability.

UAF and DF exploits, on the other hand, do not require a
specific heap layout. Therefore, the exploit reliability remains
or even reduces in some cases, as illustrated in Table 3. We
discover that this downgrade usually occurs when the tech-
nique is used after the allocation of vulnerable objects. After
a vulnerable object is allocated, Defragmentation drains the
current freelist and replaces the current freelist with a new
freelist. In UAF and DF exploitation, when the vulnerable ob-
ject is freed, the slot goes back to the slab freelist rather than

Figure 1: The Kernel Heap Exploit Model with different types of exploits and the critical phases.

the current per-CPU freelist, which poses difficulties in ob-
taining and overwriting the target slot, and thus downgrading
exploit reliability.

Heap Grooming. Similar to Defragmentation, Heap
Grooming works at the context setup stage and mitigates
the Unknown Heap Layout unreliability factor. Consequently,
Heap Grooming improves the reliability of OOB exploits.

Single-Thread Heap Spray. This technique improves ex-
ploit reliability by mitigating multiple unreliability factors
mentioned above. These factors include Unknown Heap Lay-
out, Unexpected Heap Usage, and Unpredictable Corruption
Timing. To be more specific, Single-Thread Heap Spray miti-
gates Unknown Heap Layout by spraying a large number of
payload objects, exhaustively searching for the target slot in
the heap. It also remediates Unexpected Heap Usage since
it can drain unexpected free slots and continue searching for
the target slot during runtime. Furthermore, when the vulner-
ability involves delayed operations, the technique can also
constantly allocate payload objects. This increases the chance
to land a payload object when critical phases start, making an
exploit resistant to Unpredictable Corruption Timing. Because
of so many unreliability factors mitigated, as we observe from
Table 3, Single-Thread Heap Spray is able to improve exploit
reliability significantly in most cases.

Although Single-Thread Heap Spray demonstrates sub-
stantial reliability improvement, it can still fail if unexpected
allocation or unwanted task migration happens during spray.
For example, if an unexpected object allocation occupies the
target slot, heap spray cannot reclaim the slot. Also, if the
spray process is migrated to another CPU during runtime be-
cause of the per-CPU freelist feature (§2.1), it will inevitably
spray on the new CPU’s freelist, thus failing the exploit.

Multi-Process Heap Spray. Multi-Process Heap Spray is
designed to mitigate the weakness of Single-Thread Heap
Spray while preserving its strength. It occupies all CPU’s
runqueue (§2.1) with processes doing heap spray.

It mitigates unexpected allocations by preventing other
processes, which may introduce unexpected allocations, from
getting scheduled. This is because all CPU’s runqueue is filled
with spray processes. When the scheduler decides the next
task to run, the task is likely a spray process.

Likewise, Multi-Process Heap Spray remediates Unwanted
Task Migration by forcing the scheduler to run a spray process
after the current spray process is migrated to another CPU.

Although this technique seems to mitigate all unreliability
factors mentioned above, it works at a cost. Launching many
processes shortens the time slice each process can have at
a time, which increases the chance of occurrence for a con-
text switch, resulting in more unexpected heap usage from
the kernel itself. As a result, Multi-Process Heap Spray is a
double-edged sword for exploit reliability. When the base-
line exploit is unreliable, this technique is able to boost the
reliability by a huge margin. However, when the baseline ex-
ploits are already reliable, it may introduce a slight reliability
degradation to the exploits.
CPU Pinning. Due to the per-slab freelist implementation
(§2.1), a freed slot goes back to its per-slab freelist. Exploit
processes can migrate to different CPUs during execution due
to task migration. When the exploit process frees a victim
object, the target slot goes back to the original CPU’s freelist,
whereas its allocation happens in the new CPU’s freelist. For
this reason, the exploit process can never obtain the target
slot, thus failing the exploitation.

CPU Pinning forces an exploit process to run on a spe-
cific CPU, which effectively forces it to use the same CPU
freelist. Consequently, it is able to improve exploit reliability
significantly in some cases.

7 New Technique and Compositions

As shown in Section 6.1, Kernel Heap Exploit Model helps us
better understand the reason behind the success and failure of
stabilization techniques. Going beyond enriching our under-

Type CVE Idle Busy
Baseline C.C. Baseline C.C.

OOB 2017-7184 33.51% 34.26% [+] 5.37% 10.11% [+]
OOB 2016-6187 32.89% 32.91% [+] 2.49% 16.03% [+]
OOB 2010-2959 22.09% 22.29% [+] 5.83% 39.06% [+]
OOB 2017-7308 0.04% 0.06% [+] 0.00% 0.00% [=]
UAF 2018-6555 89.98% 93.92% [+] 61.92% 82.08% [+]
UAF 2017-8824 97.64% 99.44% [+] 93.70% 98.82% [+]
UAF 2017-11176 92.17% 99.71% [+] 2.06% 11.51% [+]
DF 2017-2636 95.96% 96.06% [+] 93.26% 97.26% [+]
DF 2017-6074 98.50% 99.24% [+] 66.16% 93.68% [+]

Table 4: Exploit reliability of Context Conservation (C.C.)

Type CVE Baseline Defragment C.C. D.+C.C.

In Idle State
OOB 2017-7184 33.51% 99.46% 34.26% 99.23%
OOB 2016-6187 32.89% 99.63% 32.91% 99.63%
OOB 2010-2959 22.09% 99.37% 22.29% 99.46%
OOB 2017-7308 0.04% 0.32% 0.06% 13.14%

In Busy State
OOB 2017-7184 5.37% 25.00% 10.11% 65.49%
OOB 2016-6187 2.49% 9.89% 16.03% 56.94%
OOB 2010-2959 5.83% 20.09% 39.06% 76.77%
OOB 2017-7308 0.00% 0.00% 0.00% 0.10%

Table 5: Exploit reliability of Defragmentation (Defragment),
Context Conservation (C.C.), and its combination (D.+C.C.)

standing, the model can also help us create new techniques
— in a solo or a compositing way — to stabilize exploits fur-
ther. In this section, we present a new stabilization technique
called Context Conservation and a series of combinations of
stabilization techniques that improve exploit reliability.

7.1 Context Conservation

Taking advantage of Kernel Heap Exploit Model, we realize
that context switches may influence the two critical phases in
the way that the critical phases will last until the exploit pro-
cess gets rescheduled and completed. This prolonged critical
phase gives competitor processes more chance to occupy the
target slot or crash the allocator.

Guided by insights derived from the model, we designed a
novel stabilization technique — Context Conservation — that
aims to avoid context switches during critical phases.

Context Conservation consists of two parts. First, it re-
moves or relocates unnecessary code from critical phases. It
is common to see code for context setup, debugging, and even
sleep calls in critical phases. These unnecessary code snip-
pets prolong the critical phase, increase the chance of context
switch, and thus harm exploit reliability. By deleting or relo-
cating the unnecessary code, one could shorten the critical
phase and thus reduce the possibility that the context switch
occurs in the critical phase.

Second, it injects a stub into the exploit process to predict
when a fresh time slice could be obtained. With this informa-
tion, one will dedicate the fresh slice to the critical phase and
thus avoid a critical stage spanning across multiple time slices.
This design could further decrease the possibility of context
switch occurrence in the critical phase. Specifically, we de-
sign Context Conservation as a loop that runs a stub. In each
iteration, the stub measures the CPU’s time stamp counter
(TSC). If the context switch does not occur within the loop,
then each iteration takes fewer cycles. Otherwise, in specific
iterations, the stub could observe many cycles caused by the
CPU executing other processes. Using this cycle difference as
an indicator, the security researchers could potentially dedi-
cate a fresh time slice to the critical phase, ensuring no context
switch takes a negative impact upon exploitation reliability.

To validate the novelty of Context Conservation, we
checked with the interviewed experts, and we got the con-
firmation that this technique is novel. We also explored ex-
isting writeups and publicly available exploits and found no
literature demonstrating this technique.
Applicability. Applying Context Conservation to kernel ex-
ploits requires the awareness of when the memory corruption
occurs because the technique is designed to work during a
critical phase. Therefore, Context Conservation cannot be ap-
plied to all vulnerabilities. Instead, it only works for exploits
where the memory corruption time is predictable.
Evaluation. We evaluated Context Conservation on all ap-
plicable vulnerabilities and compared it against the baseline.
As shown in Table 4, Context Conservation outperforms the
baseline for all but one vulnerabilities and performs equally
for the single exception.

Furthermore, we observe that Context Conservation does
not improve the reliability of OOB exploits as effectively as
UAF and DF. Heap layout is critical to OOB exploits as the
victim object must be placed adjacent to the vulnerable object.
While Context Conservation decreases heap layout changes
caused by context switches, heap layout can still be changed
by other factors. Therefore, the reliability of OOB exploits
cannot be significantly improved by Context Conservation.

Inspired by the above investigation, we hypothesize that
combining Context Conservation and Defragmentation will
significantly improve OOB exploits as Defragmentation will
help mitigate the heap layout issue caused by other factors.
We validate this hypothesis and show the result in Table 5.
As we can observe, the combination of Context Conserva-
tion and Defragmentation demonstrates a more significant
improvement in exploitation reliability.

7.2 Compositing Stabilization Techniques

The kernel heap exploit model and the evaluation result in-
dicate that each individual technique mitigates different un-
reliability factors to different degrees. As such, we further

Type CVE Idle Busy R.W. Tech Combo TechBaseline Real-World Combo Baseline Real-World Combo

OOB 2017-7533 20.43% N/A 95.37% [+] 7.86% N/A 82.60% [+] N/A ¬¯°±
OOB 2017-7184 33.51% N/A 97.86% [+] 5.37% N/A 77.74% [+] N/A ¬¯°±
OOB 2016-6187 32.89% 99.34% [+] 99.89% [+] 2.49% 0.46% [−] 60.63% [+] ¬ ¬°±
OOB 2010-2959 22.09% 92.94% [+] 99.57% [+] 5.83% 88.54% [+] 95.09% [+] ¬® ¬¯°±
OOB 2017-7308 0.04% 67.92% [+] 84.90% [+] 0.00% 0.00% [=] 0.76% [+] ¬® ¬¯°±
UAF 2018-6555 89.98% 55.00% [−] 100.00% [+] 61.92% 58.18% [−] 100.00%[+] ® ¯°±
UAF 2016-8655 96.06% 84.54% [−] 99.96% [+] 0.28% 83.28% [+] 99.54% [+] ® ¯°
UAF 2017-15649 13.82% 99.68% [+] 99.96% [+] 18.34% 98.78% [+] 99.74% [+] ¯ ¯°
UAF 2016-4557 99.34% N/A 100.00% [+] 22.80% N/A 99.09% [+] N/A ¯°
UAF 2017-8824 97.64% 65.16% [−] 99.56% [+] 93.70% 61.32% [−] 99.68% [+] ¬¯ ¯°±
UAF 2016-0728 1.48% 76.68% [+] 100.00% [+] 0.14% 34.22% [+] 99.48% [+] ¯ ¯°
UAF 2017-10661 31.98% 44.96% [+] 95.96% [+] 0.18% 4.60% [+] 88.18% [+] ® ¯°
UAF 2016-10150 0.74% 72.56% [+] 99.88% [+] 47.62% 81.20% [+] 88.48% [+] ¯ ¯°
UAF 2017-11176 92.17% 98.23% [+] 100.00% [+] 2.06% 51.31% [+] 96.57% [+] ¯° ¯°±
DF 2017-2636 95.96% N/A 99.80% [+] 93.26% N/A 98.80% [+] N/A ¯°±
DF 2017-6074 98.50% 99.14% [+] 92.14% [−] 66.16% 89.76% [+] 87.66% [+] ®° ¯°±
DF 2017-8890 51.96% N/A 80.92% [+] 6.14% N/A 72.04% [+] N/A ¯°

Table 6: Performance of the combined stabilization techniques in idle and busy settings. The numbers represent the following
respect techniques: ¬ Defragmentation, Heap Grooming, ® Single-Thread Heap Spray, ¯ Multi-Process Heap Spray, ° CPU
Pinning, and ± Context Conservation. The columns “R.W. Tech” and “Combo Tech” indicate the stabilization techniques
combined in the real-world exploits and composite exploits, respectively. Note that for some vulnerabilities, the real-world
exploits are unavailable. The reason is some real-world exploits are not end-to-end exploits. Although we derive baseline
exploits from them, these incomplete real-world exploits, without major re-engineering, cannot perform successful end-to-end
exploitation. We exclude these incomplete exploits from the evaluation.

explore the combination of multiple stabilization techniques
and quantify the performance of the combined approach.

Based on our experiment result and Kernel Heap Exploit
Model, we choose Defragmentation, CPU Pinning, Context
Conservation, and Multi-Process Heap Spray to construct our
stabilization composition technique. The rationale behind our
selection is that, these 4 techniques nicely complement each
other in mitigating different unreliability factors. Defragmen-
tation eases the Unknown Heap Layout factor. CPU Pinning
mitigates the impact of Unwanted Task Migration factor. Con-
text Conservation and Multi-Process Heap Spray reduce the
impact of Unexpected Heap Usage and Unknown Corrup-
tion Timing, respectively. It should be noted that we exclude
Single-Thread Heap Spray and Heap Grooming because our
aforementioned experiment result indicates that, overall, they
underperform their alternative stabilization techniques — De-
fragmentation and Multi-Process Heap Spray (although they
outperform other methods for some test cases).

Table 6 shows the performance of our combined stabiliza-
tion technique. The combination of the 4 selected techniques
cannot work for all vulnerabilities because the condition of
triggering some vulnerabilities hinders the adoption of some
techniques. For such scenarios, we exclude the corresponding
stabilization method and preserve only those applicable.

Among all 17 vulnerabilities, the combined approach im-
proves reliability for all baseline exploits in idle and busy set-
tings except for the baseline exploit against the vulnerability
CVE-2017-6074. Compared with the baseline exploits’ suc-

cess rates, the combined approach demonstrates a 135.53%
exploitation reliability improvement (baseline: 38.61% vs.
composition method: 90.94%). It indicates that the combined
approach could be an effective method to stabilize exploits
against nearly arbitrary vulnerabilities.

We also observe from Table 6 that exploits enhanced by
our composition method also outperform the real-world ex-
ploits in terms of the exploitation success rate (real-world:
54.30% vs. composition method: 91.15%). In this work, we
gathered these real-world exploits from the Internet. These
exploits are crafted by professional security researchers. As
such, the superiority over real-world exploits implies that the
stabilization method derived from a systematic study could
better improve an exploit’s stabilization than ad-hoc methods
commonly adopted by security practitioners.

We investigated the exploit for CVE-2016-10150 to under-
stand why the combined technique improves its reliability
drastically, especially in busy systems. In this exploit, the
exploit thread and the spray thread must remain different due
to the nature of the vulnerability. Since the exploit thread
and the spray thread both do intensive work, the Linux ker-
nel will mark them as both heavy tasks and migrate one of
them to another CPU for workload balancing, which hurts
exploit reliability. Our investigation shows that this is also
the reason why Single-Thread Heap Spray performs worse
than the baseline for this CVE: its spray thread performs more
intensive work and is more likely to be migrated compared
with the baseline. CPU Pinning forces the two threads to run

on the same CPU, thus avoiding the unwanted migration and
improving reliability significantly as shown in Table 3. With
both threads pinned to the same CPU, adding Multi-Process
Heap Spray increases the chance of hitting the target slot and
further improves the reliability.

Our composition method fails to improve reliability for the
baseline exploit against CVE-2017-6074, especially in the
idle setting. In addition, for the same case, the composition-
method-enhanced exploit outperforms baseline exploits in the
busy setting. However, its reliability improvement is lower
than that of the real-world exploit. To understand the reason
behind this observation, we manually inspect both exploits.
Our discovery aligns with our early conclusion — Multi-
Process Heap Spray is a double-edge sword. In the idle setup,
it introduces unnecessary additional workload, harming the
reliability of the baseline exploit. On the contrary, in the busy
mode, though Multi-Process Heap Spray imposes additional
workload, which harms exploitation reliability, it also reduces
the impact of workload imposed by other processes, improv-
ing the baseline exploit reliability to some extent. This ex-
plains why the real-world exploit using Single-Thread Heap
Spray demonstrates better reliability improvement.

8 Discussion and Future Work

Insights on Defense. Due to limited manpower, patches
to vulnerabilities are prioritized by the security impact of
the reported vulnerabilities [41]. In current security impact
assessment systems (i.e., Common Vulnerability Scoring Sys-
tem [14], or CVSS score in short), exploit reliability serves
as an important factor. Misunderstanding exploit reliability
may mislead developers by presenting a severe vulnerabil-
ity that can be exploited reliably as low security impact. In
practice, the false security impact assessment may mislead
downstream kernel developers and lead them to de-prioritize
the patches to severe vulnerabilities because of the low CVSS
score. Our systematic study assists developers to clearly un-
derstand the kernel exploit reliability issue, helping them to
correctly prioritize patches to vulnerabilities.
Real-world Systems. We used two system workloads,
namely, idle and busy, to demonstrate reliability variation
under different workloads for each stabilization technique.
Such a setup does not reflect the reliability of each stabi-
lization technique on real-world systems because real-world
systems can have idle and busy workloads intertwining with
each other. As part of our future work, we will design more
systematic experiments to understand exploit reliability under
the real-world workload.
Kernel Heap Exploit Reliability for Other Operating Sys-
tems. This paper focuses on Linux operating systems, aim-
ing to understand the kernel heap exploit reliability issues
rooted in Linux kernel. However, kernel heap exploit reli-
ability issue also exists in other operating systems such as
Windows. For example, Windows exploit developers propose

to use heap data repairing and memory alignment to improve
the reliability of exploit against CVE-2015-0057 in Windows
[40]. We will study this research problem for other operating
systems in the future.
Exploit Stabilization Techniques Combinations. Another
research direction is to study the composition of exploit sta-
bilization techniques to further improve exploit reliability.
As pointed out in Section 7.2, combining multiple individual
exploit stabilization techniques helps to improve exploit re-
liability. However, it is hard to justify that our method is the
best combination because one should evaluate all the possible
technique combinations to draw the conclusion.

One may argue that instead of trying all combinations, we
could add techniques incrementally. For example, we could
test Defragmentation with Heap Grooming first; if the re-
sult is better than Defragmentation alone, we continue to add
more techniques; otherwise, we withdraw Heap Grooming.
However, such an incremental approach will not work. In
our study, we observe that techniques are not independent of
each other. Some techniques rely on the existence of other
techniques to further improve reliability; themselves alone do
not improve reliability significantly in some settings. More-
over, techniques behave differently for different vulnerability
types. There may not be a single combination that performs
the best for all vulnerabilities. Given the problem complexity,
we leave the study of combinations of exploit stabilization
techniques as separate research for future work.

9 Related Work

Here, we summarize the works most relevant to ours and
discuss their difference from ours.
Kernel Exploitability Assessment. There are a rich collec-
tion of research works on kernel exploitation. From technical
perspectives, kernel exploitability assessment research could
be categorized into three sub-areas below.

The first research area is to explore the capability of vul-
nerabilities. FUZE [43] searches for new use sites of UAF
vulnerabilities using under-context fuzzing and further em-
ploys symbolic execution to identify exploitable primitives
implied by the new use sites. KOOBE [20] retrieves the cor-
ruption capabilities of an OOB vulnerability manifested in
the PoC programs and discloses hidden capabilities using
capability-guided fuzzing. Yonchan et al. [32] increase the
success rate of triggering race condition vulnerabilities by
invoking inter-process interrupts to enlarge the time window.

The second research area is to obtain exploitable primi-
tives. For UAF vulnerabilities, Xu et al. [44] use two memory
collision mechanisms to occupy the freed memory region
in the kernel. Lu et al. [34] exploit use-before-initialization
vulnerabilities using deterministic stack spraying and reliable
exhaustive memory spraying. To take one step forward, Cho
et al. [23] further propose to make use of eBPF functional-
ity in the kernel for stack spraying. SLAKE [22] assists the

exploitation of slab-based vulnerabilities by first building a
database of kernel objects and then systematically manipulat-
ing the layout of kernel heap by using the kernel objects in
the database.

The third research area is to bypass mitigations in the ker-
nel. ret2dir [30] utilizes physical memory mapped to kernel
space for payload injection. KEPLER [42] uses communica-
tion channels between kernel space and user space to leak
stack canary and inject payload to kernel stack for ROP pro-
gramming. ELOISE [21] leverages a special but prevailing
type of structure to bypass KASLR and heap cookie protector.
Relying on hardware side channel attacks, [25, 28, 29, 33]
circumvent KASLR without triggering SMEP/SMAP.
Exploit Generation Techniques. In the past decade, re-
searchers have explored exploit generation approaches.

Brumley et al. [17, 19] proposed preconditioned symbolic
execution to automatically generate exploits for stack over-
flow and format string vulnerabilities. Bao et al. [18] de-
veloped shellcode layout remediation and path kneading ap-
proaches that automatically transplant existing shellcode to
the target vulnerability. The Shellphish team designed Pov-
Fuzzer and Rex to turn crashes into exploits [36, 37, 38]. Pov-
Fuzzer keeps mutating input and, at the same time, observing
how the input influences the crash. Following this work, Rex
symbolically executes the input with the purpose of jumping
to a shellcode prepared in advance. Heelan et al. focus on
heap buffer overflow vulnerabilities in user space programs.
SHRIKE [26] uses regression tests to learn how to automate
heap layout manipulation and corrupt the sensitive pointers.
They further improve their proposed approach by using a ge-
netic algorithm to replace the random search algorithm in
Gollum [27] for exploiting heap overflow vulnerabilities in
language interpreters. With a similar goal, Revery [39] also
explores exploitable memory layouts for vulnerabilities in
user space programs by using fuzz testing along with a pro-
gram synthesis method to guide the construction of a working
exploit. HeapHopper [24] and Insu et al. [45] discover new
exploitation primitives in the heap allocator, providing heap
operations and attack capabilities as actions, driving the heap
allocator to execute until primitives such as arbitrary write or
overlapped chunks are identified.

Our work is fundamentally different from those above.
Rather than concentrating on exploit generation, our work
studies the reliability problem in exploitation. To the best of
our knowledge, this is the first work that explores and studies
exploitation stabilization techniques.

10 Conclusion

The reliability of Linux kernel exploits heavily rely on security
researchers’ experiences and their opinions on exploit stabi-
lization techniques. In this research, we surprisingly discover
that security researchers’ opinions on exploit stabilization
techniques are diverse. Besides, we also observe that even

those security researchers with extensive experience in Linux
kernel exploitation research have incorrect intuitions towards
how to use exploit stabilization techniques and under what
conditions the stabilization techniques could work. Through a
comprehensive, systematic study, this research work analyzes
existing stabilization techniques thoroughly and identifies
the working condition of each exploit stabilization technique.
We show that the discovery from our study could help expe-
rienced security researchers better understand stabilization
techniques. In addition to the study, this research also pro-
poses a new technique to improve exploit reliability. We show
that by combining the new technique with existing stabiliza-
tion techniques, we can craft exploits demonstrating much
higher reliability than those crafted by security researchers.
With this discovery in hand, we safely conclude that adopting
exploit stabilization techniques correctly could significantly
improve an exploit’s reliability and thus benefit the accuracy
of exploitability assessment.

11 Acknowledgement

We would like to thank our shepherd, Vasileios Kemerlis,
and the anonymous reviewers for their helpful feedback.
This material was supported by grants from Defense Ad-
vanced Research Projects Agency (DARPA) under Grant No.
HR001118C0060, HR00112190093, and FA875019C0003,
the Army Research Office (ARO) under Grant No. W911NF-
17-1-0370, the National Science Foundation (NSF) under
Grant No. 1954466 and 2000792, the Office of Naval Re-
search (ONR) under Grant No. N00014-20-1-2008, the Na-
tional Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) under Grant No. NRF-
2021R1A4A1029650, and the 2020 IBM PhD Fellowship
Program.

References

[1] CFS Scheduler — The Linux Kernel Documentation.
https://www.kernel.org/doc/html/latest/scheduler/
sched-design-CFS.html.

[2] cve-2016-6187-poc/matreshka.c at master. https:
//github.com/vnik5287/cve-2016-6187-poc/blob/
master/matreshka.c.

[3] cve-2017-11176/cve-2017-11176.c at master. https:
//github.com/lexfo/cve-2017-11176/blob/master/
cve-2017-11176.c.

[4] kernel-exploitation/cve-2021-32606.md at main.
https://github.com/nrb547/kernel-exploitation/
blob/main/cve-2021-32606/cve-2021-32606.md.

[5] Linux Kernel 4.4.0 (Ubuntu 14.04/16.04 x86-64) -
AF_PACKET Race Condition Privilege Escalation -
Linux_x86-64 local Exploit. https://www.exploit-
db.com/exploits/40871.

[6] Linux Kernel 4.9 - TCP Socket Handling Use-After-
Free (CVE-2019-15239). https://pulsesecurity.co.nz/
advisories/linux-kernel-4.9-tcpsocketsuaf.

[7] linux-kernel-exploits/cve-2016-0728.c at master. https:
//github.com/SecWiki/linux-kernel-exploits/blob/
master/2016/CVE-2016-0728/cve-2016-0728.c.

[8] Linux_kernel_exploits/exp.c at master. https:
//github.com/ww9210/Linux_kernel_exploits/blob/
master/cve-2016-10150/exp.c.

[9] Linux_kernel_exploits/exploit.c at master. https:
//github.com/ww9210/Linux_kernel_exploits/blob/
master/cve-2017-15649/exploit.c.

[10] New Old Bugs in the Linux Kernel. https://blog.grimm-
co.com/2021/03/new-old-bugs-in-linux-kernel.html.

[11] offensive_poc/exploit.c at master. https://github.com/
hardenedlinux/offensive_poc/blob/master/CVE-
2017-7533/exploit.c.

[12] p4nda’s blog. http://p4nda.top/2019/02/16/CVE-2017-
7184/.

[13] SSD Advisory – IRDA Linux Driver UAF - SSD Secure Dis-
closure. https://ssd-disclosure.com/ssd-advisory-
irda-linux-driver-uaf/.

[14] What are CVSS Scores | Balbix. https://www.balbix.com/
insights/understanding-cvss-scores/.

[15] What is RCU, Fundamentally? https://lwn.net/Articles/
262464/.

[16] Phoronix test suite, 2015. http://www.phoronix-test-
suite.com/.

[17] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and
David Brumley. Aeg: Automatic exploit generation. In Pro-
ceedings of the 2016 Network and Distributed System Security
Symposium (NDSS), 2011.

[18] Tiffany Bao, Ruoyu Wang, Yan Shoshitaishvili, and David
Brumley. Your exploit is mine: Automatic shellcode trans-
plant for remote exploits. In Proceedings of the 38th IEEE
Symposium on Security and Privacy (S&P), 2017.

[19] David Brumley, Pongsin Poosankam, Dawn Xiaodong Song,
and Jiang Zheng. Automatic patch-based exploit generation is
possible: Techniques and implications. In Proceedings of the
29th IEEE Symposium on Security and Privacy (S&P), 2008.

[20] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian.
KOOBE: Towards facilitating exploit generation of kernel out-
of-bounds write vulnerabilities. In Proceedings of the 29th
USENIX Security Symposium (USENIX Security), 2020.

[21] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. A systematic
study of elastic objects in kernel exploitation. In Proceed-
ings of the 27th ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2020.

[22] Yueqi Chen and Xinyu Xing. SLAKE: Facilitating slab manip-
ulation for exploiting vulnerabilities in the Linux kernel. In
Proceedings of the 26th ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2019.

[23] Haehyun Cho, Jinbum Park, Joonwon Kang, Tiffany Bao,
Ruoyu Wang, Yan Shoshitaishvili, Adam Doupé, and Gail-
Joon Ahn. Exploiting uses of uninitialized stack variables
in Linux kernels to leak kernel pointers. In 14th USENIX
Workshop on Offensive Technologies (WOOT), 2020.

[24] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. {HeapHopper}: Bringing bounded model checking to
heap implementation security. In 27th USENIX Security
Symposium (USENIX Security 18), pages 99–116, 2018.

[25] Daniel Gruss, Clémentine Maurice, and Anders Fogh. Prefetch
side-channel attacks: Bypassing SMAP and kernel ASLR. In
Proceedings of the 23rd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2016.

[26] Sean Heelan, Tom Melham, and Daniel Kroening. Automatic
heap layout manipulation for exploitation. In Proceedings
of the 27th USENIX Security Symposium (USENIX Security),
2018.

[27] Sean Heelan, Tom Melham, and Daniel Kroening. Gollum:
Modular and greybox exploit generation for heap overflows
in interpreters. In Proceedings of the 26th ACM SIGSAC
Conference on Computer and Communications Security (CCS),
2019.

[28] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical
timing side channel attacks against kernel space ASLR. In
Proceedings of the 34th IEEE Symposium on Security and
Privacy (S&P), 2013.

[29] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel
address space layout randomization with Intel TSX. In Pro-
ceedings of the 23rd ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016.

[30] Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D.
Keromytis. ret2dir: Rethinking kernel isolation. In Proceed-
ings of the 23rd USENIX Security Symposium (USENIX Secu-
rity), 2014.

[31] Andrey Konovalov. Linux kernel exploitation, 2020. https:
//github.com/xairy/linux-kernel-exploitation.

[32] Yoochan Lee, Changwoo Min, and Byoungyoung Lee. Ex-
ploiting kernel races through taming thread interleaving. In
BlackHat USA, 2020.

[33] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown: Reading kernel memory from user space. In Pro-
ceedings of the 27th USENIX Security Symposium (USENIX
Security), 2018.

https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://github.com/vnik5287/cve-2016-6187-poc/blob/master/matreshka.c
https://github.com/vnik5287/cve-2016-6187-poc/blob/master/matreshka.c
https://github.com/vnik5287/cve-2016-6187-poc/blob/master/matreshka.c
https://github.com/lexfo/cve-2017-11176/blob/master/cve-2017-11176.c
https://github.com/lexfo/cve-2017-11176/blob/master/cve-2017-11176.c
https://github.com/lexfo/cve-2017-11176/blob/master/cve-2017-11176.c
https://github.com/nrb547/kernel-exploitation/blob/main/cve-2021-32606/cve-2021-32606.md
https://github.com/nrb547/kernel-exploitation/blob/main/cve-2021-32606/cve-2021-32606.md
https://www.exploit-db.com/exploits/40871
https://www.exploit-db.com/exploits/40871
https://pulsesecurity.co.nz/advisories/linux-kernel-4.9-tcpsocketsuaf
https://pulsesecurity.co.nz/advisories/linux-kernel-4.9-tcpsocketsuaf
https://github.com/SecWiki/linux-kernel-exploits/blob/master/2016/CVE-2016-0728/cve-2016-0728.c
https://github.com/SecWiki/linux-kernel-exploits/blob/master/2016/CVE-2016-0728/cve-2016-0728.c
https://github.com/SecWiki/linux-kernel-exploits/blob/master/2016/CVE-2016-0728/cve-2016-0728.c
https://github.com/ww9210/Linux_kernel_exploits/blob/master/cve-2016-10150/exp.c
https://github.com/ww9210/Linux_kernel_exploits/blob/master/cve-2016-10150/exp.c
https://github.com/ww9210/Linux_kernel_exploits/blob/master/cve-2016-10150/exp.c
https://github.com/ww9210/Linux_kernel_exploits/blob/master/cve-2017-15649/exploit.c
https://github.com/ww9210/Linux_kernel_exploits/blob/master/cve-2017-15649/exploit.c
https://github.com/ww9210/Linux_kernel_exploits/blob/master/cve-2017-15649/exploit.c
https://blog.grimm-co.com/2021/03/new-old-bugs-in-linux-kernel.html
https://blog.grimm-co.com/2021/03/new-old-bugs-in-linux-kernel.html
https://github.com/hardenedlinux/offensive_poc/blob/master/CVE-2017-7533/exploit.c
https://github.com/hardenedlinux/offensive_poc/blob/master/CVE-2017-7533/exploit.c
https://github.com/hardenedlinux/offensive_poc/blob/master/CVE-2017-7533/exploit.c
http://p4nda.top/2019/02/16/CVE-2017-7184/
http://p4nda.top/2019/02/16/CVE-2017-7184/
https://ssd-disclosure.com/ssd-advisory-irda-linux-driver-uaf/
https://ssd-disclosure.com/ssd-advisory-irda-linux-driver-uaf/
https://www.balbix.com/insights/understanding-cvss-scores/
https://www.balbix.com/insights/understanding-cvss-scores/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
http://www.phoronix-test-suite.com/
http://www.phoronix-test-suite.com/
https://github.com/xairy/linux-kernel-exploitation
https://github.com/xairy/linux-kernel-exploitation

[34] Kangjie Lu, Marie-Therese Walter, David Pfaff, and Stefan
Nürnberger and Wenke Lee and Michael Backes. Unleashing
use-before-initialization vulnerabilities in the Linux kernel
using targeted stack spraying. In Proceedings of the 2017
Network and Distributed System Security Symposium (NDSS),
2017.

[35] Gene Novark and Emery D Berger. DieHarder: securing the
heap. In Proceedings of the 17th ACM Conference on Com-
puter and Communications Security (CCS), pages 573–584,
Chicago, IL, October 2010.

[36] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christo-
pher Kruegel, and Giovanni Vigna. Firmalice - automatic
detection of authentication bypass vulnerabilities in binary
firmware. In Proceedings of the 2015 Network and Distributed
System Security Symposium (NDSS), 2015.

[37] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick
Stephens, Mario Polino, Audrey Dutcher, John Grosen, Siji
Feng, Christophe Hauser, Christopher Kruegel, and Giovanni
Vigna. SoK:(state of) the art of war: Offensive techniques in
binary analysis. In Proceedings of the 37th IEEE Symposium
on Security and Privacy (S&P), 2016.

[38] Nick Stephens, John Grosen, Christopher Salls, Audrey
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,
Christopher Kruegel, and Giovanni Vigna. Driller: Augmenting
fuzzing through selective symbolic execution. In Proceedings
of the 2016 Network and Distributed System Security Sympo-
sium (NDSS), 2016.

[39] Yan Wang, Chao Zhang, Xiaobo Xiang, Zixuan Zhao, Wenjie
Li, Xiaorui Gong, BingChang Liu, Kaixiang Chen, and Wei
Zou. Revery: From proof-of-concept to exploitable. In Pro-
ceedings of the 25nd ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2018.

[40] Yu Wang. A new CVE-2015-0057 exploit technology. In
BlackHat Asia, 2015.

[41] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu.
Precisely characterizing security impact in a flood of patches
via symbolic rule comparison. In NDSS, 2020.

[42] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. KEPLER: Fa-
cilitating control-flow hijacking primitive evaluation for Linux
kernel vulnerabilities. In Proceedings of the 28th USENIX
Security Symposium (USENIX Security), 2019.

[43] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Wei Zou, and Xi-
aorui Gong. FUZE: Towards facilitating exploit generation
for kernel use-after-free vulnerabilities. In Proceedings of the
27th USENIX Security Symposium (USENIX Security), 2018.

[44] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie,
Yuanyuan Zhang, and Dawu Gu. From collision to exploitation:
Unleashing use-after-free vulnerabilities in Linux kernel. In
Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, pages 414–425, 2015.

[45] Insu Yun, Dhaval Kapil, and Taesoo Kim. Automatic tech-
niques to systematically discover new heap exploitation primi-
tives. In Proceedings of the 29th USENIX Security Symposium
(USENIX Security), 2020.

Appendix-A: Detail of Experiment Setup

Here, we present more details about our experiment setup.
Dataset. To obtain data, namely vulnerabilities and exploits, we
exhaustively search for them online for our experiment. We collect
public exploits from different sources, including exploit writeups
from organizations [3, 7, 13], individuals [2, 5, 12, 31], and released
repositories of previous research works [21, 22, 42, 43] focusing on
Linux kernel exploitation. Next, we screen the vulnerabilities and
exploits with the following criteria for the dataset: ¶ The public ex-
ploits demonstrate the potential of obtaining control flow hijacking
primitive, which indicates successful exploitation. · The vulnera-
bilities can be backported to v4.15 kernel, and their corresponding
exploits still preserve the potential of obtaining control flow hijack-
ing primitive on the new kernel after minor fixes. This rules out
reliability differences introduced by different kernel versions. ¸ The
vulnerabilities do not rely on special hardware devices or emulators
to trigger for the ease of experiment. Following the selection criteria
above and finish incomplete exploits by ourselves, we form a dataset
containing 17 Linux kernel vulnerabilities and their corresponding
public exploits.
Exploit variants. Based on the public exploits, we construct ex-
ploits used for our experiment by following the steps below. First,
we build baseline exploits by stripping away stabilization techniques
already implemented in the public exploits. In this process, we do
not find new stabilization techniques in public exploits that is not re-
ported by the interview participants. Second, we craft exploit variants
by adding individual stabilization technique into the corresponding
baseline exploit. In this process, we follow the implementation sug-
gestions gathered from the participants. It ensures that each exploit
variant encloses only one stabilization technique in the way where
security researchers usually follow.

During exploit variants construction, we keep the modifications
on baseline exploits to the minimum in order to avoid unexpected
impacts on reliability caused by exploit structure change. As is men-
tioned in Section 5.1, we eventually obtain 102 exploits for our
evaluation. Note that we skip the construction of exploit variants if
the technique cannot be implemented in the corresponding vulnera-
bility. For example, heap spray cannot be applied to CVE-2016-6187
because the exploit aims to corrupt adjacent freelist metadata, and
heap spray eliminates the attacking surface.
VM vs. bare-metal machine. As is mentioned in Section 5.1,
we run each exploit on a VM. Admitted that the success rate of
each exploit we obtain from VMs may be different from that on
bare-metal machines, we argue that the change of reliability (e.g.,
improvement or degradation) of stabilization techniques is consistent.
Therefore, by observing the results from VMs, we can safely draw
conclusions.

Appendix-B: More Experiment Results

Table 3 shows our experiment result obtained in the configuration of
2 CPUs and 2 GB RAM. As is mentioned in Section 5.1, we varied
our configuration. Table 7, 8, and 9 illustrate our experiment results
observed in other configurations.

1. Which of the following techniques have you adopted to stabilize your exploits – (A) Defragmentation, (B) Heap Grooming,
(C) Single-Thread Heap Spray, (D) Multi-Process Heap Spray, (E) CPU Pinning?

2. If you’ve never heard about the stabilization techniques above, please report them to us.
3. if you’ve heard about the stabilization techniques above but have no clue how to use them to improve exploit reliability,

please report them to us as well.
4. What other approaches have you ever used to make your Linux kernel exploit reliable?
5. Why do you think the techniques you’ve used could work for stabilizing exploits?
6. In what conditions, the stabilization techniques you are familiar with are effective? (e.g., in lightweight or heavy workload)
7. Do the stabilization techniques familiar to you work only for specific types of vulnerabilities? If so, please specify which

technique and for what type of vulnerabilities?
8. Comparing the defragmentation technique with heap grooming technique, which one is more potent in terms of improving

exploit reliability?
9. How do you implement your exploitation stabilization techniques?

10. Among all the techniques you mentioned, which one do you think is the most effective?
11. Have you ever discovered that when you apply an exploitation stabilization technique for a vulnerability, the exploit

reliability is not improved but jeopardized? Have you tried to debug it? What is the reason behind this discovery?

Figure 2: Open questions used in our interview.

Type CVE Baseline Defragmentation Heap Single-Thread Multi-Process CPU PinningGrooming Heap Spray Heap Spray

In Idle State
OOB 2017-7533 24.72% 52.42% [+] N/A 99.36% [+] 99.62% [+] 36.42% [+]
OOB 2017-7184 30.72% 99.78% [+] 100.00% [+] 46.74% [+] 96.96% [+] 64.12% [+]
OOB 2016-6187 51.86% 99.88% [+] N/A N/A N/A 67.94% [+]
OOB 2010-2959 15.48% 99.88% [+] 99.96% [+] 65.22% [+] 66.26% [+] 21.52% [+]
OOB 2017-7308 0.02% 0.00% [−] N/A 0.00% [−] 4.64% [+] 0.04% [+]
UAF 2018-6555 96.52% 82.24% [−] N/A 100.00% [+] 100.00%[+] 98.56% [+]
UAF 2016-8655 97.18% 96.08% [−] N/A 99.74% [+] 99.80% [+] 99.56% [+]
UAF 2017-15649 17.00% 17.98% [+] N/A 73.56% [+] 99.86% [+] 99.98% [+]
UAF 2016-4557 99.76% 97.94% [−] N/A 100.00%[+] 99.98%[+] 99.80% [+]
UAF 2017-8824 97.96% 0.04% [−] N/A 97.46% [−] 99.24% [+] 99.98% [+]
UAF 2016-0728 1.74% 2.32% [+] N/A 82.20% [+] 100.00% [+] 2.68% [+]
UAF 2017-10661 18.80% 20.00% [+] N/A 35.38% [+] 80.86% [+] 73.66% [+]
UAF 2016-10150 0.00% 0.00% [=] N/A 0.00% [=] 99.64% [+] 99.98% [+]
UAF 2017-11176 96.08% 7.36% [−] N/A 99.96% [+] 99.10% [+] 88.70% [−]
DF 2017-2636 99.42% 14.04% [−] N/A 99.86% [+] 99.72% [+] 99.70% [+]
DF 2017-6074 99.98% 95.14% [−] N/A 99.86% [−] 94.74% [−] 99.88% [−]
DF 2017-8890 56.44% 0.30% [−] N/A 58.52% [+] 75.66% [+] 76.98% [+]

In Busy State
OOB 2017-7533 5.56% 10.52% [+] N/A 71.58% [+] 97.74% [+] 13.14% [+]
OOB 2017-7184 9.78% 51.42% [+] 64.98% [+] 44.96% [+] 89.32% [+] 9.48% [−]
OOB 2016-6187 5.36% 53.78% [+] N/A N/A N/A 10.78% [+]
OOB 2010-2959 9.96% 47.54% [+] 32.84% [+] 36.04% [+] 65.72% [+] 19.06% [+]
OOB 2017-7308 0.00% 0.00% [=] N/A 0.00% [=] 0.12% [+] 0.00% [=]
UAF 2018-6555 72.44% 66.86% [−] N/A 86.10% [+] 99.24% [+] 80.70% [+]
UAF 2016-8655 0.20% 0.22% [+] N/A 33.56% [+] 99.76% [+] 4.64% [+]
UAF 2017-15649 10.32% 10.18% [−] N/A 38.50% [+] 99.82% [+] 99.72% [+]
UAF 2016-4557 51.82% 59.92% [+] N/A 97.48% [+] 99.84% [+] 60.14% [+]
UAF 2017-8824 85.66% 0.06% [−] N/A 86.56% [+] 98.46% [+] 100.00% [+]
UAF 2016-0728 0.04% 0.02% [−] N/A 24.06% [+] 99.98% [+] 0.02% [−]
UAF 2017-10661 0.04% 0.02% [−] N/A 4.12% [+] 69.80% [+] 0.76% [+]
UAF 2016-10150 48.12% 47.90% [−] N/A 43.70% [−] 49.30% [+] 97.88% [+]
UAF 2017-11176 1.90% 2.32% [+] N/A 41.52% [+] 94.24% [+] 3.72% [+]
DF 2017-2636 96.46% 24.38% [−] N/A 99.00% [+] 99.34% [+] 99.56% [+]
DF 2017-6074 74.00% 62.48% [−] N/A 75.40% [+] 93.04% [+] 78.22% [+]
DF 2017-8890 19.98% 1.24% [−] N/A 29.08% [+] 49.28% [+] 34.58% [+]

Table 7: Performance of stabilization techniques under the configuration of 4 CPUs and 2G memory.

Type CVE Baseline Defragmentation Heap Single-Thread Multi-Process CPU PinningGrooming Heap Spray Heap Spray

In Idle State
OOB 2017-7533 20.58% 48.50% [+] N/A 98.40% [+] 99.60% [+] 31.42% [+]
OOB 2017-7184 32.74% 99.26% [+] 100.00% [+] 45.54% [+] 96.42% [+] 53.68% [+]
OOB 2016-6187 31.96% 99.46% [+] N/A N/A N/A 31.54% [−]
OOB 2010-2959 22.16% 99.66% [+] 99.88% [+] 56.10% [+] 58.68% [+] 21.50% [−]
OOB 2017-7308 0.08% 0.30% [+] N/A 0.00% [−] 4.68% [+] 0.10% [+]
UAF 2018-6555 89.82% 77.24% [−] N/A 99.72% [+] 100.00%[+] 93.78% [+]
UAF 2016-8655 96.42% 94.10% [−] N/A 99.44% [+] 99.80% [+] 99.18% [+]
UAF 2017-15649 13.72% 12.76% [−] N/A 58.62% [+] 99.88% [+] 99.60% [+]
UAF 2016-4557 99.26% 98.24% [−] N/A 100.00%[+] 99.98%[+] 99.36% [+]
UAF 2017-8824 97.76% 0.20% [−] N/A 98.24% [+] 98.82% [+] 98.88% [+]
UAF 2016-0728 1.98% 6.60% [+] N/A 77.58% [+] 100.00% [+] 3.44% [+]
UAF 2017-10661 33.80% 32.24% [−] N/A 51.24% [+] 82.18% [+] 71.48% [+]
UAF 2016-10150 1.10% 0.86% [−] N/A 1.56% [+] 99.72% [+] 99.48% [+]
UAF 2017-11176 92.66% 13.06% [−] N/A 99.90% [+] 99.92% [+] 97.34% [+]
DF 2017-2636 96.14% 21.72% [−] N/A 99.48% [+] 99.32% [+] 98.12% [+]
DF 2017-6074 98.76% 84.12% [−] N/A 99.00% [+] 91.88% [−] 98.54% [−]
DF 2017-8890 51.58% 0.70% [−] N/A 67.16% [+] 74.68% [+] 80.22% [+]

In Busy State
OOB 2017-7533 7.72% 23.80% [+] N/A 75.26% [+] 80.02% [+] 15.90% [+]
OOB 2017-7184 5.34% 27.56% [+] 53.88% [+] 35.26% [+] 72.72% [+] 7.50% [+]
OOB 2016-6187 2.30% 10.24% [+] N/A N/A N/A 5.26% [+]
OOB 2010-2959 5.30% 18.46% [+] 46.44% [+] 19.02% [+] 43.90% [+] 9.68% [+]
OOB 2017-7308 0.00% 0.00% [=] N/A 0.00% [=] 0.20% [+] 0.00% [=]
UAF 2018-6555 60.48% 61.72% [+] N/A 80.36% [+] 96.42% [+] 73.92% [+]
UAF 2016-8655 0.36% 0.42% [+] N/A 58.54% [+] 99.74% [+] 0.42% [+]
UAF 2017-15649 17.94% 16.82% [−] N/A 35.98% [+] 99.22% [+] 92.12% [+]
UAF 2016-4557 23.72% 14.06% [−] N/A 94.56% [+] 99.06% [+] 19.74% [−]
UAF 2017-8824 93.90% 0.38% [−] N/A 95.16% [+] 98.98% [+] 98.70% [+]
UAF 2016-0728 0.14% 0.18% [+] N/A 32.84% [+] 99.74% [+] 0.08% [−]
UAF 2017-10661 0.24% 0.26% [+] N/A 28.44% [+] 69.08% [+] 0.24% [=]
UAF 2016-10150 46.02% 46.94% [+] N/A 39.28% [−] 62.26% [+] 77.04% [+]
UAF 2017-11176 1.70% 1.58% [−] N/A 39.56% [+] 92.30% [+] 4.38% [+]
DF 2017-2636 92.98% 18.98% [−] N/A 97.74% [+] 99.18% [+] 97.86% [+]
DF 2017-6074 65.46% 50.04% [−] N/A 67.56% [+] 74.94% [+] 65.70% [+]
DF 2017-8890 6.16% 1.60% [−] N/A 20.26% [+] 44.74% [+] 9.50% [+]

Table 8: Performance of stabilization techniques under the configuration of 2 CPUs and 4G memory.

Type CVE Baseline Defragmentation Heap Single-Thread Multi-Process CPU PinningGrooming Heap Spray Heap Spray

In Idle State
OOB 2017-7533 22.60% 51.94% [+] N/A 99.49% [+] 99.49% [+] 38.54% [+]
OOB 2017-7184 32.49% 99.86% [+] 100.00% [+] 44.11% [+] 97.49% [+] 64.97% [+]
OOB 2016-6187 54.94% 99.69% [+] N/A N/A N/A 62.51% [+]
OOB 2010-2959 15.40% 99.89% [+] 99.94% [+] 64.63% [+] 64.80% [+] 20.71% [+]
OOB 2017-7308 0.03% 0.03% [=] N/A 0.00% [−] 4.69% [+] 0.11% [+]
UAF 2018-6555 96.71% 82.89% [−] N/A 99.97% [+] 100.00%[+] 98.51% [+]
UAF 2016-8655 97.26% 95.94% [−] N/A 99.80% [+] 99.74% [+] 99.54% [+]
UAF 2017-15649 15.69% 16.66% [+] N/A 73.31% [+] 99.89% [+] 100.00%[+]
UAF 2016-4557 99.71% 97.83% [−] N/A 100.00%[+] 100.00%[+] 99.77% [+]
UAF 2017-8824 97.89% 0.03% [−] N/A 97.77% [−] 99.26% [+] 100.00%[+]
UAF 2016-0728 1.71% 2.20% [+] N/A 82.80% [+] 99.97% [+] 2.49% [+]
UAF 2017-10661 18.83% 18.31% [−] N/A 35.20% [+] 76.43% [+] 72.89% [+]
UAF 2016-10150 0.00% 0.00% [=] N/A 0.00% [=] 99.49% [+] 100.00%[+]
UAF 2017-11176 91.89% 8.34% [−] N/A 99.97% [+] 99.17% [+] 96.46% [+]
DF 2017-2636 99.54% 12.80% [−] N/A 99.83% [+] 99.66% [+] 99.86% [+]
DF 2017-6074 99.86% 94.63% [−] N/A 99.94% [+] 94.31% [−] 99.94% [+]
DF 2017-8890 57.89% 0.26% [−] N/A 61.46% [+] 76.37% [+] 76.31% [+]

In Busy State
OOB 2017-7533 4.37% 10.34% [+] N/A 73.40% [+] 97.37% [+] 10.80% [+]
OOB 2017-7184 9.86% 51.94% [+] 65.89% [+] 44.66% [+] 89.26% [+] 8.37% [+]
OOB 2016-6187 4.54% 24.34% [+] N/A N/A N/A 12.37% [+]
OOB 2010-2959 10.69% 49.94% [+] 31.29% [+] 36.06% [+] 65.91% [+] 18.94% [+]
OOB 2017-7308 0.00% 0.00% [=] N/A 0.00% [=] 0.09% [+] 0.00% [=]
UAF 2018-6555 73.74% 67.40% [+] N/A 85.43% [+] 99.60% [+] 81.89% [+]
UAF 2016-8655 0.06% 0.14% [+] N/A 32.06% [+] 99.86% [+] 4.03% [+]
UAF 2017-15649 9.66% 10.83% [−] N/A 38.80% [+] 99.80% [+] 99.40% [+]
UAF 2016-4557 49.63% 45.11% [−] N/A 97.20% [+] 99.77% [+] 59.31% [−]
UAF 2017-8824 86.91% 0.06% [−] N/A 86.94% [+] 99.46% [+] 99.94% [+]
UAF 2016-0728 0.17% 0.00% [+] N/A 24.23% [+] 100.00% [+] 0.06% [−]
UAF 2017-10661 0.03% 0.09% [+] N/A 3.74% [+] 69.20% [+] 0.80% [=]
UAF 2016-10150 48.11% 47.17% [+] N/A 45.83% [−] 48.40% [+] 97.20% [+]
UAF 2017-11176 1.71% 1.91% [−] N/A 35.34% [+] 92.94% [+] 22.40% [+]
DF 2017-2636 93.69% 23.60% [−] N/A 97.89% [+] 99.43% [+] 99.63% [+]
DF 2017-6074 74.49% 63.91% [−] N/A 74.91% [+] 93.11% [+] 77.34% [+]
DF 2017-8890 19.57% 1.40% [−] N/A 32.57% [+] 51.54% [+] 34.77% [+]

Table 9: Performance of stabilization techniques under the configuration of 4 CPUs and 4G memory.

A Artifact Appendix

A.1 Abstract
This artifact requires machines with x86_64 architecture. At
least 2 logical cores and 2 GB RAM is required for running
the experiments. Since the experiment is resource-consuming,
more cores and RAM settings are recommended. The artifact
has been containerized, so it runs on most Linux-based oper-
ating systems. It has been verified to work on Ubuntu-20.04.

Our paper is about empirically evaluating the reliability en-
hancement brought by kernel exploit stabilization techniques;
the empirical experiment forms the foundation for our paper.

To validate the experiment, one can repeat the experiment
included in the artifact and compare the result with what
we present in the paper. Since our experiment result can be
slightly affected by the underlying hardware, we expect the
result on another machine to be slightly different from what is
in the paper. However, the effect of each exploit stabilization
technique should not change. In other words, if a technique
improves exploit reliability for a specific CVE in the paper,
it should behave the same in repeated experiments. However,
the improvement may be slightly different.

A.2 Artifact check-list (meta-information)
• Binary: Compiled vulnerable Linux kernels are included.

New vulnerable kernels can be compiled as well using
scripts/kernel_builder/build_kernels.py.

• Data set: The artifact requires a dataset of vulnerable Linux
kernels and corresponding exploits. They are included in ex-
ploit_env/CVEs/.

• Run-time environment: The artifact depends on "docker"
software. It requires a Linux-based host OS to build the con-
tainer image. It has been verified to work on Ubuntu-20.04.
The OS inside the container is Ubuntu-18.04. root access on
the host OS is required.

• Execution: The experiment should be run on a machine with-
out other processes running. The existence of other processes
may interfere with the experiment and affect the result.

• Metrics: The metric used in the experiment is the success rate
of exploits.

• Output: The output of the experiment is the success rate of
each exploit. The number of success/failure runs is saved in a
JSON file in the output folder.

• Experiments: To prepare and run the experiment, one needs to
1. clone the artifact repository from https://github.com/
sefcom/KHeaps, 2. build the docker image as instructed in
README.md, and 3. run an evaluation experiment for each
CVE as instructed.
The expected result is included in the paper. We expect slightly
different success rates for each exploit. However, the effect
of each exploit stabilization technique should be the same. In
other words, if a technique improves reliability in the paper,
the behavior should stay the same in repeated experiments with

a slightly different improvement. The same applies to the cases
where techniques hurt exploit reliability.

• How much disk space required (approximately)?: We ex-
pect the whole experiment to take about 20GB disk space after
disabling logging (the "-nl" option in "vuln_tester.py").

• How much time is needed to prepare workflow (approxi-
mately)?: We containerized the whole experiment. It takes
about 10-15 minutes to build a disk image for the VM and
docker image for the evaluation.

• How much time is needed to complete experiments (approx-
imately)?: To complete the 2CPU+2GB RAM experiment
(each VM configured with 2 virtual CPU and 2GB RAM), it
requires 1680 CPU days. The time needed can be reduced by
increasing the number of CPUs. For example, it can be finished
in 42 days with a 40-core machine.

• Publicly available (explicitly provide evolving version refer-
ence)?: The artifact is publicly available at https://github.
com/sefcom/KHeaps

• Code licenses (if publicly available)?: MIT license.

• Data licenses (if publicly available)?: MIT license.

• Archived (explicitly provide DOI or sta-
ble reference)?: Stable reference on GitHub:
https://github.com/sefcom/KHeaps/tree/
22b35da5f9f259f5cc8f349da9f791d9428295e4.

A.3 Description
A.3.1 How to access

Clone git repository from https://github.com/sefcom/KHeaps/
tree/22b35da5f9f259f5cc8f349da9f791d9428295e4.

A.3.2 Hardware dependencies

N/A.

A.3.3 Software dependencies

The experiment requires a Linux-based OS to build. Ubuntu-20.04
is preferred.

One of the experiments requires nested-kvm parameter in kvm-
intel kernel module. One can check whether it is enabled by checking
/sys/module/kvm_intel/parameters/nested. If it is enabled, the pseudo
file should return "Y".

The experiment depends on "docker" software.

A.3.4 Data sets

The dataset is included in the public KHeaps repository. It consists
of two parts: 1. vulnerable kernels are pre-compiled and included in
the repository. 2. kernel exploits are included in "poc" folders.

A.3.5 Models

N/A

https://github.com/sefcom/KHeaps
https://github.com/sefcom/KHeaps
https://github.com/sefcom/KHeaps
https://github.com/sefcom/KHeaps
https://github.com/sefcom/KHeaps/tree/22b35da5f9f259f5cc8f349da9f791d9428295e4
https://github.com/sefcom/KHeaps/tree/22b35da5f9f259f5cc8f349da9f791d9428295e4
https://github.com/sefcom/KHeaps/tree/22b35da5f9f259f5cc8f349da9f791d9428295e4
https://github.com/sefcom/KHeaps/tree/22b35da5f9f259f5cc8f349da9f791d9428295e4

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
Use the following command to build the docker image.

1. git clone https://github.com/sefcom/KHeaps
2. cd KHeaps
3. cd scripts/create-image/ && ./create-image.sh && cd ../..
4. docker build -t kheap .
The above process takes about 10 minutes to finish.
At this stage, a docker image called "kheap" should be created.

One can verify this by making sure its existence in the output of
"docker images".

A.5 Experiment workflow
The experiment aims to evaluate the success rates of exploits against
vulnerable kernels. For each CVE, it compiles all the corresponding
exploits first and then launches VMs with the vulnerable kernel. It
then copies exploits into the VMs using ssh and runs exploits inside
the VMs until the VMs crash. The VM monitor will extract the crash
logs and determine whether the exploits succeed or not. We regard
an exploit as successful if the VM crashes at an attacker-controlled
program counter, which demonstrates the control flow hijacking
capability of the exploit.

A.6 Evaluation and expected results
Main claim: Exploits equipped with the combo technique
outperforms realworld exploits in terms of reliability. This
can be verified by running realworld exploits and combo
exploits and comparing their success rates. In our evaluation,
the success rates of realworld and combo exploits are 54.30%
and 91.15% (67.86% improvement). In repeated experiments,
we expect combo exploits to have at least 50% improvement
over realworld exploits.

Key results:

• Defragmentation improves reliability for OOB exploits.
We expect exploits equipped with Defragmentation tech-
nique to have a significantly higher success rate com-
pared with baseline exploits. This can be verified by
running baseline exploits and exploits equipped with
Defragmentation technique.

• Defragmentation may hurt reliability for UAF or DF
exploits. We expect that Defragmentation does not sig-
nificantly improve reliability for UAF and DF exploits
and significantly hurts the reliability for some of them.
For example, CVE-2017-2636.

• Heavy workload hurts exploit reliability, but exploits
can still achieve high success rates. This can be verified
by running exploits in both idle and busy settings. One
should observe exploit success rate degradation in busy
settings and that more than half exploits equipped with

Multi-Process Heap Spray can achieve more than 90%
success rates.

• Multi-Process Heap Spray generally outperforms Single-
Thread Heap Spray. This can be verified by running
both Multi-Process Heap Spray and Single-Thread Heap
Spray exploits. We expect Multi-Process Heap Spray
to outperform Single-Thread Heap Spray in all settings
with one exception: CVE-2017-6074 in idle settings,
potentially also in busy settings.

A.7 Experiment customization
To evaluate exploits for a new CVE, one needs to add a new
folder in "CVEs" folder and specify its maximum runtime in
"setup.json".

To limit the evaluation to some specific exploits, one can
add filters in "make_pocs" function in "vuln_tester.py" script.

A.8 Notes
N/A.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

	Introduction
	Background
	Exploit-related Linux Kernel Design
	Exploitation Methods
	Exploitation Unreliability Issue

	Overview
	Kernel Heap Exploit Reliability Interview
	Stabilization Techniques
	Interview Responses

	Evaluating Stabilization Techniques
	Experiment Setup
	Effectiveness Evaluation
	Comparison with Expert Opinions
	Summary of Exploit Unreliability Factors

	Kernel Heap Exploit Model
	Exploit Stabilization Success and Failure

	New Technique and Compositions
	Context Conservation
	Compositing Stabilization Techniques

	Discussion and Future Work
	Related Work
	Conclusion
	Acknowledgement

