
I’m Spartacus, No, I’m Spartacus:

Proactively Protecting Users from Phishing by Intentionally

Triggering Cloaking Behavior

Penghui Zhang
Penghui.Zhang@asu.edu
Arizona State University

Zhibo Sun
eric.sun@drexel.edu
Drexel University

Sukwha Kyung
skyung1@asu.edu

Arizona State University

Hans Walter Behrens
hwb@asu.edu

Arizona State University

Zion Leonahenahe Basque
zbasque@asu.edu

Arizona State University

Haehyun Cho
haehyun@ssu.ac.kr
Soongsil University

Adam Oest
aoest@paypal.com

PayPal, Inc.

Ruoyu Wang
fishw@asu.edu

Arizona State University

Tiffany Bao
tbao@asu.edu

Arizona State University

Yan Shoshitaishvili
yans@asu.edu

Arizona State University

Gail-Joon Ahn
Gail-Joon.Ahn@asu.edu
Arizona State University

Adam Doupé
doupe@asu.edu

Arizona State University

ABSTRACT

Phishing is a ubiquitous and increasingly sophisticated online
threat. To evade mitigations, phishers try to “cloak” malicious
content from defenders to delay their appearance on blacklists,
while still presenting the phishing payload to victims. This cat-
and-mouse game is variable and fast-moving, with many distinct
cloaking methods—we construct a dataset identifying 2,933 real-
world phishing kits that implement cloaking mechanisms. These
kits use information from the host, browser, and HTTP request to
classify traffic as either anti-phishing entity or potential victim and
change their behavior accordingly.

In this work we present Spartacus, a technique that subverts
the phishing status quo by disguising user traffic as anti-phishing
entities. These intentional false positives trigger cloaking behavior
in phishing kits, thus hiding the malicious payload and protecting
the user without disrupting benign sites.

To evaluate the effectiveness of this approach, we deployed Spar-
tacus as a browser extension from November 2020 to July 2021.
During that time, Spartacus browsers visited 160,728 reported
phishing URLs in the wild. Of these, Spartacus protected against
132,247 sites (82.3%). The phishing kits which showed malicious
content to Spartacus typically did so due to ineffective cloaking—
themajority (98.4%) of the remainder were detected by conventional
anti-phishing systems such as Google Safe Browsing or VirusTotal,
and would be blacklisted regardless. We further evaluate Spartacus

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3559334

against benign web sites sampled from the Alexa Top One Million
List for impacts on latency, accessibility, layout, and CPU overhead,
finding minimal performance penalties and no loss in functionality.

CCS CONCEPTS

• Security and privacy→ Phishing.

KEYWORDS

phishing, web security, cloaking, social engineering

ACM Reference Format:

Penghui Zhang, Zhibo Sun, Sukwha Kyung, Hans Walter Behrens, Zion
Leonahenahe Basque, Haehyun Cho, Adam Oest, Ruoyu Wang, Tiffany Bao,
Yan Shoshitaishvili, Gail-Joon Ahn, and Adam Doupé. 2022. I’m Sparta-
cus, No, I’m Spartacus: Proactively Protecting Users from Phishing by
Intentionally Triggering Cloaking Behavior. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’22),
November 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3548606.3559334

1 INTRODUCTION

Despite concerted effort by the security community, phishing at-
tacks not only remain prevalent [12, 41], but have, in fact, recently
replaced online malware as the biggest web-based threat [11, 35].
The reasons are a familiar story for any anti-malware or immunol-
ogy researcher. Similar to computer viruses and malware, our
strongest weapon in the fight against phishing is timely detection
(through Internet-scale web crawling and analysis) and quarantine
(through blacklisting such as Google Safe Browsing) of phishing
sites [25, 52]. However, advanced phishing web sites use evasion
techniques (also known as cloaking techniques), to avoid being de-
tected by anti-phishing systems [38]. By successfully evading being
blacklisted, even for a brief time, these phishing sites significantly
extend the window in which they can damage users [25].

https://doi.org/10.1145/3548606.3559334
https://doi.org/10.1145/3548606.3559334

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Penghui Zhang et al.

All cloaking techniques aim to show phishing content to visi-
tors that they decide are a “real human,” while showing a benign
web page to those who are identified as an “anti-phishing crawler.”
Cloaking techniques are categorized into two groups: client-side
and server-side. Client-side cloaking fingerprints a potential vic-
tim’s browser, typically through the execution of JavaScript code.
Though there is an ongoing cat-and-mouse game in that space,
recent research shows promise in detecting client-side cloaked
phishing sites through analysis of the client-side cloaking code [52].

Server-side cloaking uses fingerprinting-based cloaking techniques
(a term that we use synonymously with server-side cloaking) that
leverage IP addresses, User-Agent HTTP headers, or Referrer HTTP
headers to identify visitors [14]. Because this cloaking occurs so
early in the process, client-side anti-phishing techniques are un-
likely to obtain the content they need to detect phishing sites [23,
24]. Though the anti-phishing ecosystem can eventually blacklist
phishing web sites that use server-side cloaking techniques (e.g.,
through user reports), as demonstrated by prior work and our own
experiments (in section 7), these techniques significantly increase
the time that a phishing web site can victimize users [22, 23, 52].

In studying the ecosystem, we realized that anti-phishing re-
search tends to focus on improving the analysis power of anti-
phishing systems, and that this approach fares poorly against the
small amount of information provided by a server-side cloaked site.
However, server-side cloaking techniques can use the relatively
large amount of information available to them to easily distinguish
between HTTP requests made by legitimate users and HTTP re-
quests made by anti-phishing systems.

In this paper, we consider the anti-phishing problem from a
different angle and strike at the core reason behind the effectiveness
of server-side cloaking techniques: rather than attempting to detect
server-side cloaking through improved analysis tools, we instead
make the legitimate users themselves look like anti-phishing crawlers,
so that server-side cloaked phishing pages will decline to phish them.
In this way, users can evade phishing content in real time, without
prior knowledge of the phishing web site, by leveraging, instead of
fighting, the cloaking functionality in the phishing site itself.

To realize this idea, we propose Spartacus, a framework that
disguises user browsers as anti-phishing crawlers when requesting
web page content. When visiting web sites, Spartacus mutates the
information that phishersmay fingerprint in the HTTP request such
as User-Agent, Referrer, or IP address1 to make the request appear
to be from an anti-phishing crawler. When the server-side cloaking
script examines the HTTP request, it will decide that the visit is
from an anti-phishing system, and will return a benign-looking
web page to the user, sparing them from the phishing attack.

By conducting the following evaluations, we demonstrate that
Spartacus can effectively protect users from server-side cloaking.
First, to estimate the potential benefits of Spartacus, we measured
the prevalence of server-side fingerprinting-based cloaking tech-
niques in phishing kits (programs used by phishers to easily create
phishing web sites) using an automated analysis. In total, we ana-
lyzed 2,933 phishing kits and discovered that 96.52% (2,831) of them
contain server-side fingerprinting-based cloaking techniques.

1IP address is optional due to privacy concerns, as discussed in Section 5.

Then, we performed an evaluation to see if Spartacus can trig-
ger evasion in real-world phishing sites. In our large-scale evalua-
tion of the framework, over a period of nine months from late-2020
to mid-2021, Spartacus visited 160,728 real phishing web sites
(provided by the Anti-Phishing Work Group) and evaded 82.28% of
them without relying on blacklists or other anti-phishing techniques.

Because the Spartacus framework is designed to protect end-
users directly, its impact on the functionality of benign web sites is
a concern. We evaluated the performance and functionality impact
of Spartacus on benign web sites both automatically and manually.
We found that with Spartacus installed, the tested benign web sites
displayed properly (i.e., benign web sites do not perform server-side
cloaking or otherwise change the HTML that they send based on
the mutated HTTP headers). When visiting benign web sites hosted
on providers that employ security mechanisms such as Akamai and
Cloudflare, Spartacus could successfully visit the majority of them
(99.84% out of 10,000). Complex components in these web sites,
such as buttons/links, online chat, register/login, shopping carts,
checkout, etc. functioned correctly without any error. The authors
also installed Spartacus in their daily-use browsers to visit web
sites for one month, and Spartacus did not cause any issues when
used in real-world web browsing for a month.

We also evaluated current anti-phishing systems against modern
phishing web sites and compared that to Spartacus. We submitted
the 45,526 phishing web sites that Spartacus visited as part of our
large-scale evaluation to anti-phishing systems and monitored the
result. After waiting five days for blacklists to update, 24,154 (53.1%)
phishing sites that were evaded by Spartacus (i.e., they showed
benign content to Spartacus) were not detected by anti-phishing
systems, 16,698 (36.7%) were evaded and detected, 4,598 (10.1%) were
not evaded but were detected, and 76 (0.2%) were neither evaded nor
detected. In other words, Spartacus alone can protect users against
89.8% of this subset of phishing sites we analyzed in real time, and
the combination of Spartacus and current techniques can protect
users against 99.8% of them, whereas existing techniques alone
protect against only 46.8% (and these have a median blacklisting
lag time of 2.58 hours, compared to Spartacus’ real-time effect).

These results suggest that the idea of Spartacus traps phish-
ers in a dilemma: to attack Spartacus users, phishers should dis-
able at least some server-side cloaking criteria and therefore allow
more HTTP requests to successfully retrieve the phishing content.
However, this strategy allows anti-phishing crawlers to view the
phishing content and use content-based detection techniques.

In summary, our contributions are as follows:
• An analysis of modern phishing kits to understand the preva-
lence of fingerprinting cloaking techniques.

• An automated client-side framework called Spartacus that
can evade phishingweb siteswith fingerprinting-based cloak-
ing with little impact to users’ browsing activity.

• An evaluation of Spartacus as a browser extension to mea-
sure its effectiveness and efficiency compared to current
anti-phishing systems.

To protect Internet denizens from phishing attacks, we release our
Spartacus extension for public use2.

2https://mega.nz/folder/zboygDBL#t6l1QOSZlYNgwaM_0AL89g.

https://mega.nz/folder/zboygDBL#t6l1QOSZlYNgwaM_0AL89g

I’m Spartacus, No, I’m Spartacus:

Proactively Protecting Users from Phishing by Intentionally Triggering Cloaking Behavior CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Cloaking Type Attributes Category

Server-side HTTP
Request

IP Cloaking
User-agent Cloaking
Referrer Cloaking

Client-side
Client-side

Characteristics
w/ JavaScript

User Interaction Cloaking
Fingerprinting Cloaking
Bot Behavior Cloaking

Table 1: Summary of cloaking types used in phishing.

2 BACKGROUND

The research community proposed many anti-phishing techniques
such as URL-based phishing detection [4, 5, 13, 16] and web content
analysis techniques [3, 6, 49, 51, 53]. Those approaches introduced
URL blacklists, malicious infrastructure analysis techniques, and
e-mail spam filters. In addition, commodity URL blacklists such as
Google Safe Browsing [45] and Microsoft SmartScreen [21] support
the anti-phishing ecosystem in the backend, which use machine
learning classifiers to warn users that the web site they are visit-
ing is suspicious. A downside of such defenses is that only when
anti-phishing systems retrieve phishing content can they precisely
classify phishing web sites [21, 45, 50]

To exploit the downside of the anti-phishing systems, modern
phishing campaigns use cloaking techniques that attempt to distin-
guish potential victim visits from anti-phishing entity visits in an
attempt to hide from the latter party [48]. Several research works
have shown that cloaking techniques are effective at delaying or
disabling detection [18, 22, 24]. There are two categories of cloaking
techniques: server-side and client-side (Table 1 categorizes each
type). Client-side cloaking techniques execute JavaScript in the
user’s browser to distinguish visitors and display different web page
content [52]. However, server-side cloaking techniques analyze the
HTTP request to identify visits from anti-phishing entities [14, 23].
Among them, fingerprinting-based cloaking techniques are widely
used in advanced phishing web sites. Figure 1 depicts how phishing
web sites use fingerprinting-based cloaking techniques. Cloaking
code in the phishing web server fingerprints the profile in the HTTP
request and responds with different web page content (with the
goal of showing phishing content only to potential victims).

However, as phishing kits continue to evolve, the number of
identified fingerprints increases. As shown in Figure 2, any match
of the IP address, hostname, or User-Agent will result in a 404 Page
Not Found error response. Therefore, visits from anti-phishing
systems trigger fingerprinting-based cloaking techniques in the
phishing server. As a result, anti-phishing systems cannot retrieve
phishing content, which leads to mis-detection or delayed detection.

In this work, we consider the anti-phishing problem from a
different perspective: Phishers try their best to evade visits from
anti-phishing entities, so let users camouflage themselves as anti-
phishing crawlers when visiting phishing web sites. In this way,
users will not see the phishing content. Consequently, we can pro-
tect them from the very first visit to unknown phishing web sites.

3 PREVALENCE OF

FINGERPRINTING-BASED CLOAKING

Oest et al. [23] analyzed .htaccess files in phishing kits and demon-
strated that fingerprinting-based cloaking is popular. To examine
the prevalence of fingerprinting-based cloaking techniques used

Phishing Website
Visited

Fingerprinting

Visitor
Identification

Phishing or Benign
Content Shown Based
on Visitor Identification

Hostname IP User-Agent Referer

Figure 1: Typical operation of server-side fingerprinting-

based cloaking in phishing web sites.

Figure 2: Simplified PHP code snippet of fingerprinting-

based cloaking in a phishing kit, checking IP, Hostname,

and User-Agent.

in advanced phishing kits, we manually inspect a random 10.93%
(56) of phishing kits from a dataset by phishunt.io [28], and extract
common patterns of fingerprinting-based cloaking techniques.

The patterns include (1) blocked words, for example, any poten-
tial crawler identification such as “google,” “facebook,” or “phish-
tank” (e.g., blocked_words in Figure 2), (2) IP checks that block visit
from IP addresses, such as bannedIP in Figure 2, and (3) error re-
sponses (i.e., returning an error status code and an error web page).
These attributes reflect the implementation of fingerprinting-based
cloaking techniques in real-world phishing kits.

We use the identified patterns to automatically find fingerprinting-
based cloaking techniques in phishing kits. Among the inspected
kits in phishunt.io [28] from May 2020 to July 2021, 410 of 512 con-
tain fingerprinting-based cloaking techniques through IP, Referrer,
or User-Agent (297, 5, and 318, respectively). We also analyze 2,421
phishing kits provided to us by Cisco and find that all of these
phishing kits implement fingerprinting-based cloaking techniques.
Among them, 1,983 of the phishing kits contain a User-Agent check,
and 1,660 contain an IP address check. In total, 96.52% (2,831) out
of 2,933 phishing kits contain fingerprinting-based cloaking tech-
niques.
Popular fingerprinting words. To understand the popularity of
blocked User-Agent words (e.g., “bot” and “curl”) that phishing kits

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Penghui Zhang et al.

Sensitive Word Amount Sensitive Word Amount

bot 1,273 crawler 371
curl 581 facebook 223

google 447 phishtank 200
amazonaws 446 atn 125
compatible 432 spinner 113

Table 2: Top 10 sensitivewords appeared in the phishing kits

we examined.

URL
User

No

Yes

Blacklisted?
No

Yes

Successful
Evasion?

Bot Profile
Mutator

HTTP Request
 w/ Mutated

Profile to Server

Fingerprinting
Database

Anti-phishing
Bot Profile

Block Access

Front End

Back End

Suspicious
Content

Classification

Visit Record
Microsoft

Smartscreen

Commodity
Blacklists

Returned Web
Page Content

Web Page Content

Successful
Profile

Figure 3: Spartacus architecture and its workflow.

use to evade anti-phishing crawler, we counted the appearance
of 407 unique words in the User-Agent checks of phishing kits.
Table 2 displays the top 10 blocked words. Note that one phish-
ing kit can contain multiple rules using a word. The result shows
that if a request contains “bot” or “curl” in the HTTP User-Agent
header, phishers will return an error rather than phishing content.
A potential victim’s HTTP request, however, does not include those
blocked words [44]. Based on this analysis, we can use the fre-
quently blocked words and turn them into trigger words that will
cause an HTTP request to evade the phishing content by triggering
the phishing web site’s fingerprinting-based cloaking.

4 DESIGN

By turning fingerprinting-based cloaking against phishing web
sites, we can create a proactive anti-phishing defense for users who
attempt to visit such web sites. To this end, we design, implement,
and evaluate Spartacus, a framework that automatically and se-
lectively mutates HTTP requests made by a user’s web browser
to resemble those of an anti-phishing entity. If a user protected by
Spartacus was to visit a phishing web site with fingerprinting-
based cloaking, the mutated request would trigger the cloaking,
which will then display benign content rather than a phishing page.

First, we define a profile as the set of fingerprintable attributes
and their values. For instance, one profile might contain a User-
Agent string with bot, an empty Referrer, or an AWS IP address.
Profiles are used by Spartacus to generate an appropriate HTTP
request for the target web site. Whenever phishers add new finger-
prints to fingerprinting-based cloaking, these attributes can also be
added to the Spartacus profiles.

4.1 Overview

Figure 3 illustrates the Spartacus architecture. The framework
consists of two parts, the front end and the back end. The front end
is responsible for the primary functionality, such as deciding if and
how to mutate profiles, and the back end stores information.

When a user visits a URL, it is first checked against blacklists
maintained by current anti-phishing systems, and if the URL is

found, Spartacus outright blocks the access (by displaying a promi-
nent phishing warning). Otherwise, the front end queries the Fin-
gerprinting Database to see if it has processed the URL before. If
the URL is found, and was previously successfully mitigated, Spar-
tacus will use the same profile to request the web site. To mitigate
privacy concerns, we design the Fingerprinting Database to oper-
ate locally, which does not share visit history among Spartacus
users. However, the Fingerprinting Database could be extended to
be shared through a centralized server (while maintaining users’
privacy), which we discuss in section 8.

If the URL is neither blacklisted nor in the database, Sparta-
cus will mutate the profile based on the Anti-phishing Bot Profile
Database, skipping any mutations that previously failed to trig-
ger cloaking3. Then, the HTTP request, with the mutated profile,
is sent to the server. After receiving the page content, we deter-
mine whether it has suspicious content by using a classification
engine that executes concurrently with Spartacus and runs in the
background to avoid delaying page rendering. The purpose of the
suspicious content classification is to verify if the mutated profile
was effective at triggering cloaking. The Fingerprinting Database
is, therefore, updated with the visited URL, the mutated profile
Spartacus used, and the classification result.

4.2 Visit Pre-filters

When a user visits a URL, it must first pass through two pre-filters.
Blacklist Filter.With the contributions of the anti-phishing ecosys-
tem, Spartacus can filter known phishing URLs that have already
been blacklisted by commodity blacklists, specifically Google Safe
Browsing and Microsoft SmartScreen. Any match will block access
to the URL without further action.
Prior Visits. If the URL is not blacklisted, Spartacus will examine
if the URL was previously visited by querying the Fingerprint-
ing Database. If the URL was already visited and was successfully
evaded, then Spartacus will use the successful profile mutation.

4.3 Bot Profile Mutator

The Bot Profile Mutator is responsible for profile mutation to trigger
fingerprinting-based cloaking in advanced phishing web sites. Items
in the profile can be modified or changed to camouflage the user as
anti-phishing crawlers, for instance the User-Agent HTTP header.
Generally, anti-phishing crawlers contain “bot” and “crawler,” or
the name of the company such as “Google” and “Facebook” in the
User-Agent HTTP header. The mutator uses the trigger words that
we automatically extracted from phishing kits (discussed in Table 2).
Spartacus is extendable to accept more trigger words to mutate
users’ profile to evolve with the state of anti-phishing crawlers/bots
and server-side cloaking.

Another aspect is the Referrer HTTP header. Typically, the po-
tential victim visits from the phisher’s phishing lures. Therefore,
phishers can block all visits that are not from the phishing lures.

Optionally, the profile mutator can leverage proxy servers to
camouflage the user’s IP address. For example, a proxy server
on AWS EC2 is useful because phishers have inferred that some
anti-phishing crawlers use AWS EC2 (according to our analysis

3We populate the Anti-phishing Bot Profile Database with known crawler-looking
profiles (e.g., extracted from phishing kits as discussed in section 3).

I’m Spartacus, No, I’m Spartacus:

Proactively Protecting Users from Phishing by Intentionally Triggering Cloaking Behavior CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

in Table 2). In this case, the bot mutator can proxy the request
through an evaded IP. Even though the proxy server can help evade
fingerprinting-based cloaked phishing websites, it can also raise
privacy concerns (discussed in section 5). Therefore, users must
consent to the privacy implications before enabling it.

In the mutation process, Spartacus appends one trigger word
from the Anti-phishing Bot Profile Database to the user’s own
User-Agent string, following the order of the popularity in Table 2.
Spartacus also avoids using trigger words that were not successful
for the same URL. Additionally, Spartacus sets the Referrer to None
(to remove the header). As for the optional IP/Hostname mutation,
Spartacus reroutes the request to a proxy server, whose IP is in
one of the most popular blocked IP ranges.

4.4 Suspicious Content Classification

After submitting the HTTP request to the server, Spartacus will
receive an HTTP response from the server. After the suspicious
content classification, there are four different possibilities:

(1) The server is benign and responds with benign content.
(2) The server is benign and responds with suspicious content.
(3) The server is malicious and responds with benign content

(e.g., error page or redirection to a benign web site, as shown
in Figure 4c).

(4) The server is malicious and responds with suspicious con-
tent.

We consider a successful evasion whenever there is no features
such as a login form, sensitive (phishy) words (e.g., “username”
and “password”), and a submission button [50], because we do
not otherwise know if the content is benign. For example, if a
user first visits paypal.com, which is benign (but Spartacus does
not know this), Spartacus mutates the profile and the web page
will still contain “username” and “password” fields because PayPal
returns them. In this case, Spartacus will treat it as unsuccessful
because there is still “phishy” content. Similarly, if a user visits
a PayPal phishing page such as paypal-verify.com that does not
contain cloaking, Spartacus mutates the profile but still receives
a phishing web page. In this case, Spartacus will also treat it as
unsuccessful for the same reason.

For case (1), there is no security risk to the user, so we consider it
a successful evasion. However, there is a possibility that the benign
web site serves different content to Spartacus (due to User-Agent
sniffing or other server-side techniques) and that Spartacus breaks
the functionality of the web site for the user. Our experimental
results (presented in Section 6.6) demonstrate that very few modern
web sites change functionality/responses based on our changes to
the HTTP request. In addition, we present in Section 6.6 a proposal,
with experimental results, of adding another pre-filter to Spartacus
to apply Spartacus to only suspicious web sites.

Case (2) happens when the user visits benign web sites that con-
tain phishing-like features such as a login form, sensitive (phishy)
words (e.g., “username” and “password”), and a submission button.
As these are often indistinguishable from phishing pages (in fact,
they are copied by phishers), we still consider it as an unsuccessful
evasion, because we consider all unknown web sites with a login
form as suspicious. In the suspicious content classification, we still
determine it as “suspicious” and the mutation will be marked as

“unsuccessful.” Similar to case (1), this situation does not affect users’
browsing activities on those web sites, according to the experimen-
tal result in Section 6.6. When the user visits the same web site
next time, Spartacus will mutate the profile with other available
trigger words in the Anti-phishing Bot Profile Database. Based on
the evaluation result in Section 6.6, changing trigger words does
not impact the web site’s accessibility, layout, or functionality.

In case (3), the server is malicious with evasion techniques and
determines that the visit from Spartacus is an anti-phishing bot
visit. So it either returns an error web page, or redirects the visit to
a benign web site. Consequently, Spartacus successfully prevents
users from seeing phishing content, by triggering the fingerprinting-
based cloaking techniques in the phishing web sites.

In case (4), the phishing web site either (a) does not perform any
fingerprinting-based cloaking or (b) the profile failed to trigger the
fingerprinting-based cloaking. In the former case (a), Spartacus
cannot trigger any cloaking behavior in the phishing site, so we
consider it as an unsuccessful evasion. However, our results in Sec-
tion 7 demonstrate that these phishing sites are quickly detected
by the anti-phishing ecosystem (median detection of 28 minutes).
In the latter case (b), Spartacus will store the failed profile to help
inform future visits to this URL to trigger the fingerprinting-based
cloaking. Note that, from the perspective of the browser, this case
is the same as case (2), which is why we cannot simply block the
URL (we do not know if the server is malicious or benign).

5 PRIVACY

The Spartacus framework, as discussed in Section 4, is a client-side
framework that runs solely on the user’s machine. However, we
strive to protect as much of the user’s privacy as possible. In addi-
tion, these privacy protections are important to enable a potential
centralized Spartacus in future work (discussed in Section 8).

5.1 Privacy Information

Spartacus requires four types of sensitive information from users:
(1) visited URL: When Spartacus mutates the profile, it operates
on a hashed URL, and only stores the hashed URL, along with the
successfulness of evasion. (2) The HTTP profile used: Spartacus
stores the user’s HTTP profile to modify it. The privacy informa-
tion in the profile includes the User-Agent string, which contains
browser version, browser type, and operating system information,
and the Referrer. (3) Returned HTTP response: Spartacus analyzes,
but does not store, the returned HTTP response to inspect whether
the HTTP response is suspicious. If valid content is returned, an
external classification process will determine its suspiciousness by
searching for content such as sensitive words and login forms [50].
The classification result is then stored to mark if the corresponding
profile mutation successfully evades suspicious content. (4) Po-
tential proxy server monitoring: if a user wants improved evasion
performance beyond the User-Agent/Referrer mutation, he/she can
choose to turn on the proxy server option in Spartacus. In this
case, all user’s HTTP requests will be sent through a proxy server,
but the user can be susceptible to monitoring.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Penghui Zhang et al.

5.2 Privacy Consent and Protection

We ensure that Spartacus reasonably considers users’ privacy, so
we implemented both consent and protection methodologies to no-
tify users of the data that is collected and prevent their information
from being stolen and abused.
Consent. To ensure that users are aware of the privacy informa-
tion Spartacus access and stores, a privacy policy consent notice is
presented on first use. First, the privacy information used by Spar-
tacus is summarized. Then, using Privacy Policies [29], a privacy
policy is created for Spartacus. The information Spartacus col-
lects and how it uses the information are described on the privacy
policy page. Users can choose to opt out and not install Sparta-
cus if they do not consent. Especially, when users want to turn
on the proxy server option to improve evasion performance, they
must understand and consent to the option’s trade-off. We created
a dedicated privacy policy page for the proxy server option.
Protection Methodology. The privacy information Spartacus
collects does not contain any PII, which minimizes potential harm.
Spartacus stores the hashed URL, bot profile (IP address, User-
Agent triggering word, and Referrer), and evasion success.

6 EVALUATION

We implemented Spartacus as a Chrome browser extension, and
we evaluate Spartacus through three perspectives: effectiveness,
latency, and functionality impact. These three aspects demonstrate
the feasibility of the Spartacus framework in practice because
it can successfully evade advanced phishing web sites, introduce
negligible latency to user browsing, and not introduce breakage.
Dataset. In our evaluation, we used two different datasets, a mali-
cious one, to test the effectiveness of Spartacus, and a benign one,
to understand its potential impact on benign web sites.
(1) APWG Dataset: For the effectiveness evaluation, Spartacus
visited 160,728 live phishing web sites from November 2020 to
July 2021 using the Anti-Phishing Working Group (APWG) URL
feed [32], which is a curated dataset of reported phishing URLs, sup-
ported by a large number of collaborating members. Additionally,
we leveraged another 8,474 live phishing web sites in the APWG
Dataset to evaluate the effectiveness of IP mutation.
(2) Benign Dataset: To evaluate the impact on benign web sites, we
collected a dataset of 60,848 benign domains, randomly selected
from 629,843 domains in the Alexa Top OneMillion Domain List [1].

6.1 Effectiveness

We evaluate the effectiveness of Spartacus by visiting the same
phishing web sites with two different browser configurations: one
with default settings (default browser) and the other with Sparta-
cus installed (Spartacus browser). The phishing URLs for both
visits are from the APWG Dataset. To reduce the impact of the
selection of trigger words on the results, for each URL the Sparta-
cus browser uses a profile with a random trigger word from the
407 trigger words, no Referrer header, and no IP proxy. We use a
simple profile because, per our analysis of phishing kit behavior in
Section 3, any cloaking rule match will trigger the cloaking. Note
that in Section 6.2 we evaluate the effectiveness of each trigger
word and in Section 6.4 we evaluate the effectiveness of proxying

the IP address. For each visit, we record the final landing web page
content and URL.

In the experiment on 160,728 phishing URLs from APWG from
November 2020 to July 2021, 132,247 (82.28%) did not contain mali-
cious content in Spartacus. We consider an HTTP response from
the Spartacus browser benign if its web page (1) is different from
the one shown on the default browser and (2) does not contain
suspicious content, such as “phishy” words or bad forms, according
to the content features in our reimplementation of CANTINA+ [50].

Figure 4 demonstrates the difference of response web page con-
tent between the default and the Spartacus browser visit for a
cloaked phishing web site. The content in Figure 4a shows the
phishing content when the default browser visits it. When Sparta-
cusmutates the HTTP profile to include a random trigger word and
removes the Referrer header, the phishing web site shows the error
web page in Figure 4b. Other phishing web sites redirect visitors
to a benign URL instead of returning an error page. In this way,
Spartacus receives the web page content shown in Figure 4c, also
indicating a successful evasion.

This result shows that Spartacus can camouflage users as anti-
phishing entities and prevent users from phishing content on phish-
ing sites with fingerprinting-based cloaking techniques. Because
the users see benign content (either an error page or a benign URL),
the user is never exposed to the phishing attack, thus proactively
preventing the user from falling victim to the phishing attack—even
if they are the first user to visit the phishing URL.

6.2 Effectiveness of Trigger Words

In the prior Spartacus experiment, we used random trigger words
for each URL visit. While this limited the impact of trigger word
selection on the results, in our design of Spartacus the profile
mutator selects trigger words in order of their popularity. There-
fore, we evaluate the effectiveness of each trigger word on actually
triggering fingerprinting-based cloaking techniques. The trigger
words are retrieved through the analysis of phishing kits, discussed
in Section 3.

We tested all the trigger words by visiting each phishing web site
with a different profile consisting of the trigger word, no Referrer
header, and no IP proxy. In the evaluation, one profile means one
trigger word because each profile contains only one trigger word.
Similar to the effectiveness evaluation, we also visit the web site us-
ing a default browser as a comparison. We conduct the experiment
on 916 phishing web sites. 725 of them show web page differently
at least under one trigger word between Spartacus browser and
default browser.

In the 725 cloaked phishing web sites, each trigger word has dif-
ferent evasion capabilities. Table 3 is the result of the top 10 trigger
words in successfully evading phishing content. The word bot has
the most sites evasion. 99.31% of the cloaked phishing web sites
can be evaded by appending bot in the User-Agent. Compared with
the popularity rank in Table 2, it is also the most popular blocked
word in the phishing kits we examined. The effectiveness of this
word in practice confirms its popularity in the phishing kits. Simi-
larly, the top trigger words such as “amazonaws,” “phishtank,” and
“google” also have high usage in phishing kits. An interesting note

I’m Spartacus, No, I’m Spartacus:

Proactively Protecting Users from Phishing by Intentionally Triggering Cloaking Behavior CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

(a) Default browser visit.

(b) Spartacus browser visit with er-

ror.

(c) Spartacus browser visit with

content.

Figure 4: Web page content from default and Spartacus browser visits for a cloaked phishing web site.

is that “bot” and “amazonaws” combined can trigger cloaking in all
phishing web sites that used fingerprint-based cloaking techniques.

This result shows that trigger words can effectively evade phish-
ing web sites with fingerprinting-based cloaking techniques. Fur-
thermore, a small number of trigger words can evade a myriad of
cloaked phishing web sites.

6.3 Effectiveness of Only User-Agent or

Referrer

Spartacus achieved over 80% evasion rate by mutating both User-
Agent and Referrer headers, but we hope to understand the effective-
ness of Spartacus mutating either User-Agent or Referrer header.
To this end, we performed evaluation where we had three differ-
ent browsers visiting the same dataset of phishing web sites: (1) a
browser with Spartacus only mutating the User-Agent string (UA
Spartacus browser); (2) a browser with Spartacus only mutating
the Referrer (REF Spartacus browser); and (3) a normal browser
(normal browser).

In this evaluation, we visited 4,905 phishing web sites using the
above three browsers. The analysis was conducted similar to sub-
section 6.1, where we compared the web page contents of each
web site from the UA Spartacus browser and the REF Sparta-
cus browser with those from the normal browser, respectively,
and thus we can detect the amount of web pages of either the UA
Spartacus browser or the REF Spartacus browser that did not
contain suspicious content. Among the visited phishing web sites,
the UA Spartacus browser evaded 4,028 of them, while the REF
Spartacus browser evaded 16 of them. Spartacus could evade
a small amount of phishing websites by only mutating the Refer-
rer, because a limited number of phishing kits contained Referrer
inspection (our analysis showed 5 out of 410 phishing kits from
phishunt.io in section 3). We consider Referrer as an option in Spar-
tacus because phishers may check the Referrer in future phishing
kits. Combined, Referrer and User-Agent could evade 82.44% of
the phishing web sites. These results show that Spartacus only
mutating the User-Agent header could evade more phishing web
sites than only mutating the Referrer, however mutating both of
them improves protection than only one mutation.

6.4 Effectiveness of Proxy Server Option

Even though Spartacus can successfully evade phishing content
in over 80% of the phishing web sites by mutating User-Agent and
Referrer headers, we want to analyze the effectiveness of mutating

Trigger Word Count Trigger Word Count

bot 720 atn 717
amazonaws 718 curl 717
phishtank 718 facebook 716
dwcp 717 crawler 716
google 717 katipo 713

Table 3: Top 10 trigger words that evaded phishing content.

the IP address. Therefore, we conducted another experiment with a
Spartacus profile that had default User-Agent header, has Referrer
header, but proxied the connection through a server with an Ama-
zon AWS IP address. Since the proxy server option may introduce
privacy implications, we turn off this option by default. Users can
opt to use this feature in Spartacus only if they read, understand,
and consent to the privacy implications.

In this experiment we used 8,474 phishing web sites. Similar to
the evaluation procedure in Section 6.1, we visited those web sites
in both the default and the Spartacus browsers (only changing the
IP address according to the profile). Then, we compared the web
page contents of each phishing web site on both visits and detected
if the web page of the Spartacus browser does not contain suspi-
cious content. Among the visited phishing web sites, Spartacus
evaded 88.98% (7,540) of them through the proxy server. Therefore,
Spartacus can evade phishing web sites that implement IP, User-
Agent, or Referrer cloaking. Phishers may design emerging cloaking
techniques in the future, however Spartacus was designed as an
extensible framework so that fingerprint features can be added.

6.5 Efficiency and Latency

We next explore Spartacus’ impact on the user experience when
they visit benign web sites. By design Spartacus may introduce
latency to the HTTP request, due to the database query, HTTP
profile mutation, and returned content inspection.

We conducted an experiment to measure the latency of Sparta-
cus from the following three perspectives: database query, profile
mutation, and content inspection. We used exthouse [39], which
analyzes the impact of a browser extension on web performance,
as our test bench, which contains five major measurements:

• Time to Interactive (TTI): the time it takes for the page to
become fully interactive with the extension.

• First Input Delay (FID Δ): the time from when a user first
interacts with the web site to the time when the browser is
actually able to begin processing event handlers in response
to that interaction.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Penghui Zhang et al.

Score FID Δ (ms) Scripting Δ (ms) TTI (ms) Added Long Task (ms) Extra CPU Time (ms)

Name B M B M B M B M B M B M
Grammarly for Chrome 50 60 20 190 300 1,000 1,300 3,500 380 1,740 300 961

Adblock Plus 59 100 20 20 0 100 900 3,300 0 0 0 0
Skype 82 74 140 130 100 300 900 3,300 130 250 141 277

Avira Browser Safety 94 90 60 50 100 200 1,100 3,600 0 110 63 112
Avast SafePrice 99 68 120 90 100 200 1,100 4,000 310 400 67 82

AdBlock 100 100 50 20 0 100 1,000 3,300 0 0 0 0
Google Translate 100 100 20 20 0 100 900 3,200 0 0 0 0

Pinterest Save Button 100 100 30 30 0 100 800 3,200 0 0 0 0
Tampermonkey 100 100 20 20 0 100 1,000 3,400 0 0 0 0
uBlock Origin 100 100 20 20 0 100 1,000 3,600 0 0 0 0
Spartacus 100 100 20 20 0 100 800 3,200 0 0 0 0

Table 4: Exthouse metrics of top 10 Chrome extensions [39]

along with Spartacus when visiting Benign and Malicious

websites.

• Scripting Time (Scripting Δ): the amount of time JavaScript
execution in the extension.

• Long Task (Added Long Task): this value represents a sum
of Long Tasks added by the extension, where Long Tasks are
defined as a task that blocks the main thread for 50 ms or
more4.

• Extra CPU Consumption (Extra CPU Time): the extra CPU
consumption of the extension for each URL the browser
visits.

The lower the factors are, the better the web site performs with
the tested extension. Lastly, exthouse creates a score for the exten-
sion. A higher score reflects a better performance of the extension.

Table 4 illustrates the exthouse scores of the top 10 Chrome
extensions [39] and Spartacus when visiting benign and malicious
web sites. We tested these extensions with 100 web sites, including
half benign and half malicious, and used the average in the metrics.
Spartacus has a score of 100, based on a 20 ms FID, 0 scripting
delta, and 800ms of TTI when visiting benign web sites. Themetrics
of Spartacus visiting malicious web sites also outscores those of
other popular extensions. Even though it takes a longer time to
interact with the malicious web site, it is still acceptable because
Spartacus needs time to mutate the profile, which is still less time
than other extensions. For instance Avira Browser Safety (ABS)
is an extension that warns users if the web site is unsafe. It adds
long tasks and extra CPU time when visiting malicious web sites.

This evaluation result shows that Spartacus adds minimal over-
head to web browsing. The inspection result shows that Spartacus
outscores popular Chrome extensions and has negligible impact on
the performance of the web sites, compared with other extensions.

6.6 Impact on Benign Web Sites

Merzdovnik et al. discovered that add-ons can cause some web sites
to malfunction (e.g., they found that the PrivacyBadger extension
led to a large number of timeouts and therefore to a potentially
large number of malfunctioning web sites) [20]. Therefore, it is
important for Spartacus to minimize the negative impacts on
benign URL visits. Impacts may include the ability to access web
sites, the correct display of web site layout, and the correct web
site functionality. To evaluate functionality of benign web sites,
we conducted two experiments: a Coarse-Grained (a large-scale
evaluation with automated analysis) and Fine-Grained (a small-
scale evaluationwith in-depthmanual analysis). In each experiment,
for each URL, the Spartacus browser used a profile with a random
trigger word, no Referrer header, and no IP proxy.

4https://developer.mozilla.org/en-US/docs/Web/API/Long_Tasks_API

Experiment Tested Passed Blocked

Different

Layout

W/out Algorithm 1 60,848 60,574 150 124
W/ Algorithm 1 60,848 60,688 29 39

Table 5: Coarse-grained experiment result of Spartacus

with and without applying the Logic of mutating HTTP pro-

file discussed in Algorithm 1.

6.6.1 Coarse-Grained Experiment. In the Coarse-Grained exper-
iment, we intended to evaluate if the Spartacus framework has
negative impacts on access to the web site or the web site layout
through automated analysis of results on a large crawl of benign
domains. We randomly sampled 60,848 (9.66%) from the 629,843
URLs in Alexa Top One Million Domain List [1] and visited them in
both default and Spartacus browsers. We visited them using both
browsers with existing sessions similar to the user’s browser. We
compared the resulting web page screenshot and HTML similarity
on the visited URLs. The result is shown in Table 5: 0.25% (150) have
different layouts, and 0.20% (124) block access to the Spartacus
browser.

We first manually examined the results to identify why the Spar-
tacus browser shows different layouts from the default browser.
We found that although the screenshot and HTML were dissimilar
between the default and Spartacus browser visits, such differences
did not impact the use of the web site. Figure 8 and Figure 6 show
typical differences in browser rendering between the default and
Spartacus browser visits. For example, the web page is rendered
differently in terms of screenshot similarity between the default
and Spartacus browser visits shown in Figure 8. The difference
here is due to the shape of the buttons, different background color,
and content spacing. In Figure 6, a window popped up to ask for
permission to use cookies in the default browser, but did not in
Spartacus’s visit. The cookie request pop-up that was missing in
the Spartacus browser is not due to the extension: in 10 visits in
different default browsers, the pop-up appeared only three times.
Evaluation on a larger dataset of benign web sites. To further
evaluate Spartacus’ potential impact on benign web sites, we con-
ducted an experiment where we visited 629,843 benign web sites in
the Alexa Top One Million Domain List. We found that only 3,023
(0.48%) benign web sites either blocked access or showed a different
web page layout to the Spartacus browser. This result confirms the
prior results that most benign web sites do not block Spartacus’
visit and do not deliver a different web page content from a normal
visit one to a Spartacus browser.
Benignweb sites with securitymechanisms. Some benign web
sites are built on web hosting services such as Cloudflare and Aka-
mai, and the services contain security mechanisms such as anti-
DDoS and anti-crawling. Therefore, to make sure that users can
successfully visit those web sites with the protection of Sparta-
cus, we visited 5,000 Cloudflare-based and 5,000 Akamai-based
benign web sites using Spartacus. In total, we could successfully
visit 99.86% of 10,000 web sites. 14 benign sites were inaccessible.
It is mainly because the web site owners employ traffic filtering
mechanisms over the CDNs. With such low false-evasion rate, users
can visit most benign web sites hosted on the CDNs successfully,

https://developer.mozilla.org/en-US/docs/Web/API/Long_Tasks_API

I’m Spartacus, No, I’m Spartacus:

Proactively Protecting Users from Phishing by Intentionally Triggering Cloaking Behavior CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Algorithm 1

Logic of mutating HTTP profile
1: 𝑝 = 𝑑𝑒𝑓 𝑎𝑢𝑙𝑡_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒
2: 𝑢 = 𝑢𝑟𝑙_𝑡𝑜_𝑣𝑖𝑠𝑖𝑡
3: if

4: (𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑢) ≤ 𝑁𝑒𝑢𝑡𝑟𝑎𝑙) and
5: (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑢) ≥ 1, 501) or
6: (𝑢.𝑑𝑜𝑚𝑎𝑖𝑛 NOT in top reviewed sub-domains) then
7: 𝑝 =𝑚𝑢𝑡𝑎𝑡𝑒_ℎ𝑡𝑡𝑝_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 (𝑝)
8: end if

9: 𝑠𝑒𝑛𝑑_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 (𝑝)

and can report the falsely evaded benign web sites to the Spar-
tacus provider, who can asynchronously inspect them and force
Spartacus to use the default profile to visit the web sites.
Potential Improvement. Although Spartacus has low false pos-
itives when visiting benign web sites, there is still the possibility to
reduce false positives. We inspected the 150 benign web sites that
were falsely evaded by Spartacus and 150 cloaked phishing web
sites that were successfully evaded by Spartacus. To further dif-
ferentiate the two categories, we extracted domain reputation [37],
domain age [7], and top viewed sub-domains [43] of URLs from
benign and malicious web sites. Cisco Talos5 defines reputation of a
domain using five categories: Trusted, Favorable, Neutral, Question-
able, and Untrusted [37]. Reputation-wise, 136 out of 150 phishing
URLs have a reputation lower or equal to Neutral level, the lowest
of which is Untrusted. In contrast, only 24 of 150 benign URLs have
a lower reputation than Favorable, the lowest of which is Question-
able (and only one is Questionable). In terms of domain lifespan, the
mean value of domain duration since registration for benign URLs
is 4,692 days and the median is 4,521 days. However, the average
lifespan of the malicious domains is 1,618 days, with a median of
900 days. Moreover, all 150 benign URLs fall into the top viewed
sub-domains of the corresponding domain names, while none of
the phishing ones matches.

Therefore, we summarize that a legitimate domain has a higher
reputation and longer life than a malicious one, and they are within
top viewed sub-domains. We can further reduce the possibility of
Spartacus falsely evading benign web sites by introducing another
pre-filter to Spartacus before mutating the HTTP profile.

We choose the phishing domain age that resides on 75% in the list
(1,501) and the Neutral level as thresholds because these thresholds
clearly divided trustworthy domains from un-trustworthy domains.
With this pre-filter, if a URL has a lifespan lower than 1,501 days
and its reputation level is Neutral or worse, or its sub-domain is
not top viewed, then Spartacus will mutate the HTTP profile. The
logic is shown in Algorithm 1.

We evaluated this augmented version of Spartacus and found
that 29 legitimate domains show different web page content on
the default and augmented version of Spartacus browsers, as
listed in Table 5. Hence, only 0.04% of 60,848 domains result in
a false positive detection of a phishing web site. This is because
the 29 domains do not meet the trustworthiness requirements and
therefore Spartacus mutated the profile when visiting them. As
one possible mitigation, we can provide a channel for users to
report falsely evaded web sites. After receiving a report, we can

5Cisco Talos is a threat intelligence service and used by other studies [26, 27, 31].

(a) Default browser visit. (b) Spartacus visit

Figure 5: Difference due to the shape of buttons.

(a) Default browser visit. (b) Spartacus visit

Figure 6: Difference due to popup.

Evaluation Perspective

Amount

Default Spartacus
Accessibility 58 58
Correct Layout 58 58

Proper
Functionality

Click Buttons 58 58
Online Chat 3 3

Shopping Cart Add 5 5
Registration/Login 22/22 22/22

Table 6: Fine-grained experiment result of Spartacus visit,

compared with the result of default browser visit.

conduct a manual inspection and force Spartacus to trust the false-
positives. In comparison, phishing URLs can still be evaded through
Spartacus because they pass through the augmented pre-filter.

6.6.2 Fine-Grained Experiment. Inspired by the methodology used
by Snyder et al. [34] and Trickel et al. [40], in the Fine-Grained
experiment, we aim to manually evaluate the operation of web sites
visited through Spartacus.

This methodology concentrates on the operation of a web site
from the perspective of the user. Even though Spartacus may
introduce an error to a web site, if the users do not perceive any dif-
ference when browsing, then we consider that Spartacus does not
negatively impact the web site. This methodology focuses on user-
facing impacts to benign web site functionality, and the experiment
was performed by the authors manually.

The experiment includes the evaluation of a web site’s rendering
and interactions between visitors and the web site. There are four
steps in the experiment methodology: (1) Open legitimate domains
in a browser with Spartacus installed and also in a browser with
default settings. (2) Inspect the accessibility of the web site, similar
to the Coarse-Grained experiment. (3) After successful web page
content retrieval, compare the layouts between different visits. (4)
Interact with links, buttons, and other activities such as register/lo-
gin, online chat, or shopping, as long as the web site allows us to
do so, to ensure that the web site performs correctly. (5) Finally,

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Penghui Zhang et al.

test the authentication functionality to ensure that Spartacus will
not impact it.

We randomly selected 60 domains from the Alexa Top One Mil-
lion List, choosing 20 every 200,000 (for an even distribution), and
the result is displayed in Table 6. As a comparison, the default
browser had the same result as that of Spartacus. Among the 60
legitimate domains, 58 were accessible. Two domains were inacces-
sible even in the default browser, so we suspect that they are offline.
For the 58 accessible domains, we followed the steps described
previously to inspect them. All of them have the same layout as the
visit from the default browser. Then, we interacted with the 58 web
sites by clicking buttons, chatting online, and adding items into the
cart if it is a shopping web site. All 58 web sites performed normally.
Lastly, we registered an account on 15 web sites, and all were suc-
cessful in Spartacus. Even though we can successfully register an
account, we still need to make sure that we can log in properly with
those accounts to test the authentication process under Spartacus.
The results shows that all the accounts we registered during the
Fine-Grained experiment could be logged in successfully.

With the experimental results from both the Coarse- and Fine-
Grained experiments, we can summarize that Spartacus has little
impact on the accessibility and visibility on benign web sites. There-
fore, Spartacus can protect users from visiting advanced phishing
web sites while keeping their normal browsing activities.
Trigger words on benign web sites.When browsing benign web
sites, Spartacus can think that the visit resulted in evasion failure,
and then mutate future visits with new trigger words. Therefore,
we conducted an experiment to show that these trigger words do
not impact the layout and functionality of benign web sites. We
tested the top 10 popular trigger words in Table 2 on 30 randomly
selected benign domains. We then compared the screenshot and
HTML similarity between the default browser visit and 10 Spar-
tacus browser visits using the different trigger words. The result
shows that each of the 30 benign domains have the same layout
using different trigger words. Additionally, we manually tested the
functionality as in the Fine-Grained experiments and found that all
web sites performed correctly with different trigger words.
Benignweb siteswith risk-based authenticationmechanism.

Risk-based authentication (RBA) mechanism prevents web sites
from requiring users to use Two-Factor Authentication by inspect-
ing the features in an HTTP request such as IP addresses and/or
User-Agent string [46]. As major web sites such as Amazon, Google,
LinkedIn, and Facebook have employed such a mechanism [46], we
evaluate Spartacus’s ability to trigger Two-Factor Authentication
in RBA enhanced web sites. To this end, we visited eight web sites
that are known to employ RBA using Spartacus6. These web sites
cover all three types of RBA implementations mentioned in prior
work [46]. The result shows that we could successfully visit all
eight web sites without encountering a Two-Factor Authentica-
tion prompt, which demonstrates that Spartacus does not cause
inconvenience for users visiting RBA protected benign web sites.

6.6.3 Long-term Use. To determine long-term impact on the user
experience, we evaluate how Spartacus performs in a long term
usage scenario. The authors installed Spartacus in their primary

6Amazon, Facebook, GOG.com, Google, iCloud, LinkedIn, Steam, and Twitch [46].

L

24,154

Evaded & BLed

Evaded & Not BLed

16,698 0 4,598 76

Not Evaded & BLed

Not Evaded & Not BLed

Figure 7: Venn Diagram describing the ability of Sparta-

cus and current anti-phishing systems against phishingweb

sites. The unit is the amount of phishing web sites.

browsers for daily use for a period of one month. During the ex-
periment, we looked for abnormalities, such as unexpected access
blocking, frequent risk-based authentications (e.g., reCAPTCHA
and two-factor authentication), and slow page rendering. After the
one-month experiment, the authors did not encounter with any
abnormal actions during normal browsing.

6.6.4 Reason of Low Breakage. In both Fine-Grained and Coarse-
grained experiments, the Spartacus browser could successfully
request and render benign web sites and allow users to interact
with them as usual. It is mainly because we only append one of
the trigger words in the User-Agent string, instead of replacing the
string with a crawler one. As we discovered in section 3, phishing
servers will deny the request because they employ an aggressive
filtering mechanism—blocking access as long as there is any sus-
picious patterns in the User-Agent string. However, benign web
sites perform anti-crawling in a different way. For example, they
monitor new or existing user accounts with high levels of activ-
ity and no purchases, or they detect abnormally high volumes of
product views as a sign of non-human activity [8]. Additionally, be-
nign web apps such as WordPress [47] check the User-Agent string
mainly because they need the visitor’s browser version to deliver
the best web page layout and according functionalities. Therefore,
the difference between benign and malicious server’s anti-crawling
mechanisms allows Spartacus to evade phishing sites and access
benign ones.

7 ECOSYSTEM SUPPORT

Note that in our experiments (detailed in Section 6.1) Spartacus
cannot evade 17.72% of the URLs. We hypothesize that these phish-
ing web sites do not rely on fingerprinting-based cloaking tech-
niques. Nowadays, the anti-phishing ecosystem such as Google
Safe Browsing and VirusTotal can quickly detect and/or blacklist
such phishing attacks. Therefore, we can rely on support from the
ecosystem to handle the phishing web sites that Spartacus cannot
evade.

To verify our hypothesis, we evaluated the blacklist/detection
speed of current anti-phishing systems on the examined phishing
URLs. We submitted the phishing URLs to Google Safe Browsing
and VirusTotal at the same time that Spartacus visited them, and

I’m Spartacus, No, I’m Spartacus:

Proactively Protecting Users from Phishing by Intentionally Triggering Cloaking Behavior CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

queried the results every 15 minutes to calculate the speed. Due
to the deployment time of this experiment, we submitted 45,526
phishing URLs: 40,852 that Spartacus could evade and 4,674 that
Spartacus could not evade. Among the 4,674 submitted phish-
ing URLs that Spartacus could not evade, Google Safe Browsing
and VirusTotal combined blacklisted 4,598 of them. The remain-
ing 76, after manual inspection, were found that they were not
phishing web sites and were falsely reported to APWG. This evalu-
ation result verifies that the ecosystem currently can protect users
from phishing web sites that Spartacus cannot evade, which acts
as a complement to Spartacus. In contrast, we submitted 40,852
phishing web sites that Spartacus successfully evaded. This result
shows that 24,154 of them were not detected or blacklisted by the
anti-phishing systems.

Figure 7 overviews the ability of Spartacus along with support
from the anti-phishing ecosystem. Within our dataset, advanced
phishing web sites significantly outnumber basic ones, which is
shown in Figure 7 as the blue circle and red circle, respectively. How-
ever, the anti-phishing ecosystem detects only 40.87% of the sub-
mitted evaded phishing URLs. As a comparison, Spartacus alone
can evade 89.73% of submitted phishing URLs. The ecosystem can
mostly handle the non-evaded phishing URLs as a complement to
Spartacus, and hence both advanced and basic phishing web sites
can be evaded or detected.

We also measure the detection speed of current anti-phishing
systems, which is visualized in Figure 8a (within 24 hours) and Fig-
ure 8b (whole frame). All submitted phishing web sites that Sparta-
cus cannot evade are detected/blacklisted in two hours, and 50% of
these can be detected within 22 minutes. As a comparison, current
anti-phishing systems do not perform well against phishing web
sites that can be evaded by Spartacus. The median detection time
is 154 minutes. However, within 24 hours, they only detect/blacklist
76.16% of the cloaked phishing web sites. Moreover, it can take as
long as 47.82 hours to finally detect a cloaked phishing web site.
As a comparison, Spartacus provides a nearly real-time protection
against cloaked phishing web sites. This reflects the ability of the
current anti-phishing ecosystem against phishing web sites: for
basic phishing web sites, current anti-phishing systems can react
and blacklist them quickly, however, for advanced phishing, it takes
a long time to detect, which is exploited by phishers to victimize
users. Spartacus, however, only needs an average of 3.2 seconds
(based on Table 4) to evade advanced phishing web sites. Therefore,
Spartacus can not only greatly shorten the golden hour [25] left
by the current anti-phishing ecosystem, but also evade cloaked
phishing web sites that the ecosystem cannot detect.

8 MITIGATING SERVER-SIDE CLOAKING

According to our observation and analysis in Section 3, phishers
use fingerprinting-based cloaking techniques to accomplish their
phishing attacks. We expect that the sophistication of phishing web
sites will continue to improve, and that advanced phishing kits will
create more fingerprints to inspect, match, and block requests that
appear to be from anti-phishing entities.

Although researchers and organizations have proposed mitiga-
tions for phishing web sites [19, 50], they all require malicious web
page content to feed the classifier and make decisions. Server-side

0 5 10 15 20 25
Blacklist/Detection Speed (hr)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f p
hi

sh
in

g
U

R
L

s

24.00

2.58

1.97

0.36

Evaded
Not Evaded

(a) CDF of Blacklist/Detection

time within 24 hours of current
anti-phishing systems against

detected phishing URLs evaded

and not evaded by Spartacus.

0 10 20 30 40 50
Blacklist/Detection Speed (hr)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f p
hi

sh
in

g
U

R
L

s 47.82

2.58

1.97

0.36

Evaded
Not Evaded

(b) CDF of Blacklist/Detection

time of current anti-phishing

systems against detected phish-

ing URLs evaded and not evaded

by Spartacus.

Figure 8: CDF of Blacklist/Detection time.

Model

Precision

(%)

Recall

(%)

FPR

(%)

FNR

(%)

F1

ACC

(%)

CANTINA+ 95.45 54.60 2.60 45.40 0.69 76.00

Table 7: Evaluation metrics of CANTINA+ [50] against

cloaked phishing websites.

cloaking techniques deny requests from the anti-phishing systems,
and their methodologies may not be useful. To demonstrate this,
we selected 500 cloaked phishing web sites that can be evaded by
Spartacus and 500 benign web sites from the Alexa Top One Mil-
lion List to test our implementation of CANTINA+ [50], which is
a phishing classifier with URL-, web-, and HTML-based features.
Specifically, we re-implemented CANTINA+ to perform the classifi-
cation of returned web page content. We then collected the features
that CANTINA+ needs and used the machine learning algorithm
proposed in the original paper for training and testing. The result,
depicted in Table 7, shows a high false-negative rate when classify-
ing cloaked phishing web sites. Therefore, the ecosystem should
ensure that existing and new detection and mitigation systems are
capable of adapting to fingerprinting-based cloaking techniques.

While Spartacus attempts to modify the user’s HTTP requests
to appear as anti-phishing systems, to best combat server-side
cloaking anti-phishing systems should carefully modify the HTTP
requests of their crawlers to mimic users. In this case, the anti-
phishing systems can bypass the cloaking techniques and retrieve
the actual malicious content. For example, they should avoid send-
ing requests based on the IP addresses of well-known anti-phishing
entities.

Additionally, Spartacus can be extended to share resources
among users. Instead of only locally recording visited URLs and
successfulness of profile mutations, Spartacus can merge the visit
history from users in a centralized server. Then, the server can
distribute and update periodically to the clients. In this way, users
can benefit from an up-to-date Fingerprinting Database because
Spartacus knows to block access if it ever successfully evaded
the web site from other users. Furthermore, the Fingerprinting
Database is designed to minimize privacy issues in this centralized
setting, because all URLs are hashed and only the triggering words
and proxy server IP are stored in the database.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Penghui Zhang et al.

9 COUNTERMEASURES TO SPARTACUS

Even though Spartacus can successfully prevent users from see-
ing phishing content in fingerprinting-cloaked phishing web sites,
attackers will explore countermeasures to mitigate it.

9.1 Using Other Cloaking Techniques

There are different types of phishing web sites in the wild, roughly
categorized into basic and advanced. Within advanced phishing
web sites, server-side and client-side cloaking techniques are two
techniques that help evade detection from the anti-phishing ecosys-
tem. Because Spartacus focuses on the evasion of phishing attacks
with server-side cloaking techniques, attackers can use other types
of cloaking techniques to harm individuals and organizations.

Phishers can use basic phishing web sites, phishing web sites
with client-side cloaking, or those with User Interaction Cloak-
ing (e.g., CAPTCHAs). As we presented in Section 7 and with the
analysis results from Oest et al. [24], basic phishing web sites can
be quickly detected and blacklisted by anti-phishing systems in a
median of 28 minutes. As for client-side cloaking techniques, phish-
ers can implement them into their web sites to bypass Spartacus.
However, Zhang et al. [52] proposed a methodology to detect such
evasion by force-executing JavaScript. Hence, client-side cloaked
phishing web sites can also be detected using prior techniques.

Finally, phishers can create a CAPTCHA web page as a barrier
before showing phishing content. Such a technique can bypass
evasion from Spartacus. However, using CAPTCHA may lower
phishers’ profit because it is time consuming and challenging for
potential victims [30]. Secondly, it does not distinguish real users
from anti-phishing crawlers because every visitor needs to solve
the puzzle [30]. Recently, researchers have proposed methodologies
of bypassing CAPTCHAs [33, 36, 52], which further allows anti-
phishing crawlers to bypass them.

In a future with Spartacus deployed and support from the anti-
phishing ecosystem, it is challenging to bypass all anti-phishing
methodologies while allowing only potential victim traffic to visit.
Such dilemmas force attackers to either spend resources inventing
new evasion techniques or accept reduced profit.

9.2 Emerging Phishing Based on Spartacus

We assume that phishers can gain full knowledge of Spartacus
and develop countermeasures accordingly.

For example, phishers could develop stateful server-side cloaking
techniques: allowing the first person with a matching template to
evade the phishing content, then change the cloaking so that future
visits would see phishing content. This could affect the second user
who visits the same phishing web site, because Spartacus uses the
“successful” profile for the user. Hence, the user views the phish-
ing content due to the stateful nature of the server-side cloaking.
However, by design, the suspicious content classification module
is run externally and determines whether the returned web page
has suspicious content, no matter if Spartacus mutates the profile
or uses a successful one. Therefore, when the classification mod-
ule determines that the profile is unsuccessful to evade phishing,
Spartacus will mark it as failed and will select a new one in the
future.

As another example, phishers could enumerate the bot profiles
in Spartacus and develop high-fidelity cloaking techniques which
identify anti-phishing ecosystem HTTP profiles more precisely. For
example, phishers could only cloak visits that contain the exact
User-Agent string of anti-phishing crawlers7. This technique could
bypass Spartacus’s evasion. However, these precise fingerprints
increase the ease of anti-phishing systems to successfully bypass
the cloaking by trivially changing their User-Agent string. Finally,
phishers could develop complex and advanced fingerprinting tech-
niques to use fingerprints that Spartacus does not consider, such
as the order of HTTP headers, TCP/IP fingerprints, support for eso-
teric HTTP features (e.g., supporting the 100 Continue response
code), timing side-channels, and so on. While some of these fin-
gerprints could be added to Spartacus, it might not be technically
feasible to add all of them. Therefore, we could work with anti-
phishing entities (or they could deploy Spartacus themselves) to
integrate the exact Spartacus framework into their anti-phishing
systems, so that these low-level fingerprints would be identical to
Spartacus users.

10 LIMITATIONS

Even though Spartacus can protect users from a diverse array of
sophisticated phishing web sites using server-side cloaking tech-
niques in the wild, our framework should be considered alongside
certain limitations.

10.1 Spartacus Design

PhishingClassification.The Spartacus framework is not a phish-
ing classification system. Instead, it camouflages users as security
crawlers when they visit web sites with cloaking techniques and
can evade malicious content if they use fingerprinting-based cloak-
ing. This approach proactively protects users in nearly real time.
As evaluated in section 6, Spartacus can evade 82.28% of phishing
web sites in real time using only User-Agent and Referrer mutation,
with a negligible impact on benign web sites. Previous work has
proposed methodologies classifying phishing web sites with high
accuracy [19, 45]. Therefore, with Spartacus and existing classi-
fication methodologies, the anti-phishing ecosystem can cover a
broader range of phishing attacks.
HTTP requestmutation.As discussed in section 2, fingerprinting-
based cloaking techniques can inspect IP, Hostname, User-Agent,
Referrer, and other fingerprints to classify whether the visitor is an
anti-phishing crawler or a potential victim. In Spartacus’s design,
we consider mutating User-Agent and Referrer in the HTTP request,
along with changing the IP address using proxy servers. There is a
limitation where Spartacus cannot evade phishing web sites that
only identify crawlers/bots by new fingerprints that Spartacus
does not mutate. One solution for the potential limitation is that we
intentionally designed Spartacus as an extendable framework. In
this case, Spartacus can remain up-to-date to evade new cloaked
phishing web sites.

7E.g., phishers only block visits whose User-Agent perfectly matches Mozilla/5.0
(Linux; Android 5.0; SM-G920A) AppleWebKit (KHTML, like Gecko) Chrome Mobile Safari
(compatible; AdsBot-Google-Mobile; +http://www.google.com/mobile/adsbot.html).

I’m Spartacus, No, I’m Spartacus:

Proactively Protecting Users from Phishing by Intentionally Triggering Cloaking Behavior CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

10.2 Spartacus Deployment and Evaluation

Phishing kit analysis. In the analysis to understand the preva-
lence of fingerprinting-based cloaking, we hope to include as many
phishing kits as possible. Due to resource limitations, we only
analyzed phishing kits from phishunt.io [28] and those from the
public dataset from Cisco. Within both resources, we analyzed 2,933
phishing kits and summarized that the fingerprinting-based cloak-
ing techniques exist in 96.52% of the phishing kits. We believe that
this analysis demonstrates the prevalence of fingerprinting-based
cloaking techniques.
Data collection. We selected the APWG Dataset to evaluate the
effectiveness of Spartacus. Due to infrastructure and resource
limitations, we were only able to test Spartacus over total of nine
months from November 2020 to July 2021. Even though additional
data crawling would be desirable to evaluate Spartacus, the APWG
Dataset provides a breadth of phishing data collection because it
contains diverse types of phishing web sites targeting different
brands. The phishing web sites are submitted periodically by col-
laborating members including anti-phishing systems and financial
organizations impersonated by phishing web sites. Overall, we
tested Spartacus on over 130,000 live phishing web sites and veri-
fied that Spartacus could evade malicious content by triggering
fingerprinting-based cloaking. Therefore, we believe this limitation
is mitigated to the extent allowed by current resources.

11 RELATEDWORK

Researchers have studied phishing for several decades. They have
proposed several methodologies to detect phishing attacks based
on features from the URL, content, etc., and then warn users before
visiting the deceptive web sites. Some work analyzes the URL of a
suspicious web site based on the lexical features or URL ranking
to determine the maliciousness of the site [5, 10, 15, 17]. Others
collect web page content and detect phishing web sites with textual
and visual similarity features [9, 51, 53]. Combining these tech-
niques with other available features, including both URL and web
page content, researchers developed blacklist-based anti-phishing
systems such as Google Safe Browsing [45] to protect users from
visiting suspicious web sites. All the proposed methodologies in
the past, however, have a limitation that they are detection systems,
and require certain features to classify the maliciousness, which
can take time to acquire (due to cloaking). Furthermore, Bijmans
et al. [2] found that the median uptime for phishing domains is 24
hours, showing the fast move of phishers. The delay of detection
from anti-phishing systems and quick action of phishers extends
the gap to mitigating phishing attacks [25].

With the large-scale implementation of cloaking techniques in
phishing attacks [22–25], researchers realize that sophisticated
phishing attacks are responsible for a substantial portion of damage
and that the whole ecosystem should prioritize mitigating phishing
with evasion techniques. Cloaking techniques make anti-phishing
more challenging because it becomes more and more difficult to
retrieve the phishing content, which most anti-phishing systems
depend on. With a very limited amount of web site features, current
anti-phishing systems cannot precisely determine the malicious-
ness.

Therefore, analysis and detection of server-side and client-side
cloaking techniques have been proposed to fight against such so-
phistication. For client-side cloaking techniques, Zhang et al. [52]
proposed CrawlPhish to force-execute JavaScript snippets in the
HTML response to reveal malicious content. As for server-side
cloaking in phishing, previous work [14, 23, 42] categorizes types
of server-side cloaking through analysis of compromised phishing
kits.

We consider the nature and prevalence of cloaked phishing
web sites [22, 23] and provide a novel methodology to proactively
prevent users from seeing phishing content. Rather than bypass
cloaking techniques in phishing web sites, Spartacus deliberately
triggers them and hence prevents users. Our framework is also
extensive with the ability to add fingerprints that phishers use in
the future.

12 CONCLUSION

Through our analysis of compromised phishing kits, we understand
that fingerprinting-based cloaking techniques are largely imple-
mented in the sophisticated phishing attacks and help to evade visits
from anti-phishing entities. Such evasion is difficult to mitigate be-
cause phishers can always include new features of the up-to-date
anti-phishing crawlers and identify them.

We consider this problem from a different perspective. The cur-
rent state of the ecosystem is that the anti-phishing entities identify
the fingerprints that phishing kits use to trigger cloaking and design
new crawlers without those fingerprints, which are then learned
by phishers. The phishers then add new fingerprints—in a never-
ending cycle.

The Spartacus system proposes a new angle for the anti-phishing
ecosystem to fight against cloaked phishing web sites. Rather than
attempting to circumvent cloaking techniques, Spartacus beats
the advanced phishing web sites at their own game by deliberately
triggering the cloaking behavior. For benign web sites, we demon-
strated that Spartacus has negligible impact on users’ access, web
layout, and web functionality.

Due to the rise of sophisticated phishing web sites in the wild,
we believe that automated evasion systems such as Spartacus are
essential to keep trapping phishers in a lose-lose dilemma where
they cannot differentiate real users from anti-phishing crawler
visits. Methodologies such as ours can be incorporated into the
ecosystem to more expeditiously and reliably evade sophisticated
phishing, thus proactively protecting users from phishing attacks.

ACKNOWLEDGMENTS

Many thanks to the anonymous referees for their thoughtful re-
views. We would also like to thank our shepherd, Pierre Laperdrix.

This material is based upon work supported in part by Army
Research Office (ARO) Grant No. W911NF17-1-0370, Defense Ad-
vanced Research Projects Agency (DARPA) Grant No. N66001-20-
C-4020 and HR00112190093, and the Korea Internet & Security
Agency (KISA) grant funded by the Personal Information Protec-
tion Commission (PIPC) (No. 1781000003). Any opinions, findings,
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
United States Government or any agency thereof.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Penghui Zhang et al.

REFERENCES

[1] Amazon. 2021. Alexa Top Sites. http://s3.amazonaws.com/alexa-static/top-
1m.csv.zip.

[2] Hugo Bijmans, Tim Booij, Anneke Schwedersky, Aria Nedgabat, and Rolf van
Wegberg. 2021. Catching Phishers By Their Bait: Investigating the Dutch Phishing
Landscape through Phishing Kit Detection. In 30th USENIX Security Symposium
(USENIX Security 21). 3757–3774.

[3] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. 2011. EX-
POSURE: Finding Malicious Domains Using Passive DNS Analysis.. In Ndss.
1–17.

[4] Sun Bin, Wen Qiaoyan, and Liang Xiaoying. 2010. A DNS based anti-phishing
approach. In 2010 Second International Conference on Networks Security, Wireless
Communications and Trusted Computing, Vol. 2. IEEE, 262–265.

[5] Aaron Blum, Brad Wardman, Thamar Solorio, and Gary Warner. 2010. Lexical
feature based phishing URL detection using online learning. In Proceedings of the
3rd ACM Workshop on Artificial Intelligence and Security. 54–60.

[6] Davide Canali, Davide Balzarotti, and Aurélien Francillon. 2013. The role of web
hosting providers in detecting compromised websites. In Proceedings of the 22nd
international conference on World Wide Web. ACM, 177–188.

[7] Danny Cork. 2021. A Python package for retrieving WHOIS information of
domains. https://github.com/DannyCork/python-whois.

[8] DataDome. 2019. Web scraping protection: How to protect your website
against crawler and scraper bots. https://datadome.co/bot-management-
protection/scraper-crawler-bots-how-to-protect-your-website-against-
intensive-scraping/#2.

[9] Matthew Dunlop, Stephen Groat, and David Shelly. 2010. Goldphish: Using
images for content-based phishing analysis. In 2010 Fifth international conference
on internet monitoring and protection. IEEE, 123–128.

[10] Mohammed Nazim Feroz and Susan Mengel. 2015. Phishing URL detection using
URL ranking. In 2015 ieee international congress on big data. IEEE, 635–638.

[11] Google. 2019. Google Transparency Report. (2019). https://transparencyreport.
google.com/safe-browsing/overview?hl=en.

[12] Grant Ho, Asaf Cidon, Lior Gavish, Marco Schweighauser, Vern Paxson, Stefan
Savage, Geoffrey M Voelker, and David Wagner. 2019. Detecting and characteriz-
ing lateral phishing at scale. In 28th USENIX Security Symposium. 1273–1290.

[13] Huajun Huang, Liang Qian, and Yaojun Wang. 2012. A SVM-based technique to
detect phishing URLs. Information Technology Journal 11, 7 (2012), 921–925.

[14] Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Comanescu, Jean-
Michel Picod, and Elie Bursztein. 2016. Cloak of visibility: Detecting when
machines browse a different web. In 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, 743–758.

[15] Mahmoud Khonji, Youssef Iraqi, and Andrew Jones. 2012. Enhancing phish-
ing e-mail classifiers: A lexical url analysis approach. International Journal for
Information Security Research (IJISR) 2, 1/2 (2012), 40.

[16] Mahmoud Khonji, Andrew Jones, and Youssef Iraqi. 2011. A novel Phishing
classification based on URL features. In 2011 IEEE GCC conference and exhibition
(GCC). IEEE, 221–224.

[17] Anh Le, Athina Markopoulou, and Michalis Faloutsos. 2011. Phishdef: Url names
say it all. In 2011 Proceedings IEEE INFOCOM. IEEE, 191–195.

[18] Bin Liang, Miaoqiang Su, Wei You, Wenchang Shi, and Gang Yang. 2016. Cracking
classifiers for evasion: a case study on the google’s phishing pages filter. In
Proceedings of the 25th International Conference on World Wide Web. 345–356.

[19] Yun Lin, Ruofan Liu, Dinil Mon Divakaran, Jun Yang Ng, Qing Zhou Chan, Yiwen
Lu, Yuxuan Si, Fan Zhang, and Jin Song Dong. 2021. Phishpedia: A Hybrid
Deep Learning Based Approach to Visually Identify Phishing Webpages. In 30th
USENIX Security Symposium (USENIX Security 21).

[20] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar Weippl. 2017. Block me if you can: A
large-scale study of tracker-blocking tools. In 2017 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 319–333.

[21] 2019. Windows Defender SmartScreen. (2019). https://github.com/
MicrosoftDocs/windows-itpro-docs/blob/public/windows/security/threat-
protection/windows-defender-smartscreen/windows-defender-smartscreen-
overview.md.

[22] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Kevin Tyers. 2019. PhishFarm: A Scalable Framework for Measuring the Effec-
tiveness of Evasion Techniques Against Browser Phishing Blacklists. In 40th.
Oakland, CA, 764–781.

[23] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Gary Warner. 2018. Inside a phisher’s mind: Understanding the anti-phishing
ecosystem through phishing kit analysis. In 2018 APWG Symposium on Electronic
Crime Research (eCrime). IEEE, 1–12.

[24] Adam Oest, Yeganeh Safaei, Penghui Zhang, Brad Wardman, Kevin Tyers, Yan
Shoshitaishvili, and Adam Doupé. 2020. PhishTime: Continuous longitudinal
measurement of the effectiveness of anti-phishing blacklists. In 29th USENIX
Security Symposium (USENIX Security 20). 379–396.

[25] Adam Oest, Penghui Zhang, Brad Wardman, Eric Nunes, Jakub Burgis, Ali Zand,
Kurt Thomas, Adam Doupé, and Gail-Joon Ahn. 2020. Sunrise to Sunset: Analyz-
ing the End-to-end Life Cycle and Effectiveness of Phishing Attacks at Scale. In
29th USENIX Security Symposium (USENIX Security 20).

[26] Alina Oprea, Zhou Li, Robin Norris, and Kevin Bowers. 2018. Made: Security ana-
lytics for enterprise threat detection. In Proceedings of the 34th Annual Computer
Security Applications Conference. 124–136.

[27] Peng Peng, Chao Xu, Luke Quinn, Hang Hu, Bimal Viswanath, and Gang Wang.
2019. What happens after you leak your password: Understanding credential
sharing on phishing sites. In Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security. 181–192.

[28] Phishunt. 2021. Exposing phishing kits seen from phishunt.io. https://github.
com/danlopgom/phishing_kits.

[29] Privacy Policies. 2021. #1 Privacy Policy Generator - Privacy Policies . https:
//www.privacypolicies.com/.

[30] radware bot manager. 2021. How CAPTCHA Is Used To Block Bots, And Why
We Do Not Recommend Using It. https://www.radwarebotmanager.com/when-
to-use-and-when-not-to-use-captcha/.

[31] Arya Renjan, Karuna Pande Joshi, Sandeep Nair Narayanan, and Anupam Joshi.
2018. Dabr: Dynamic attribute-based reputation scoring for malicious ip ad-
dress detection. In 2018 IEEE International Conference on Intelligence and Security
Informatics (ISI). IEEE, 64–69.

[32] Foy Shiver. 2016. APWG and the eCrime Exchange: AMember Network Providing
Collaborative Threat Data Sharing. https://www.first.org/resources/papers/
valencia2017/shiver-foy_slides.pdf.

[33] Suphannee Sivakorn, Jason Polakis, and Angelos D Keromytis. 2016. I’m not a
human: Breaking the Google reCAPTCHA. Black Hat (2016), 1–12.

[34] Peter Snyder, Cynthia Taylor, and Chris Kanich. 2017. Most websites don’t need
to vibrate: A cost-benefit approach to improving browser security. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
179–194.

[35] Verizon Enterprise Solutions. 2019. Data Breach Investigations Report (DBIR).
(2019).

[36] Fabian Stark, Caner Hazırbas, Rudolph Triebel, and Daniel Cremers. 2015.
Captcha recognition with active deep learning. In Workshop new challenges
in neural computation, Vol. 2015. Citeseer, 94.

[37] Cisco Talos. 2021. IP & Domain Reputation Center. https://www.cisco.com/c/
en/us/products/security/talos.html.

[38] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi, Yarik
Markov, Oxana Comanescu, Vijay Eranti, Angelika Moscicki, et al. 2017. Data
breaches, phishing, or malware?: Understanding the risks of stolen credentials. In
Proceedings of the 2017 ACM SIGSAC conference on computer and communications
security. ACM, 1421–1434.

[39] Treo. 2020. Exthouse: Analyze the impact of a browser extension on web perfor-
mance. . https://github.com/treosh/exthouse.

[40] Erik Trickel, Oleksii Starov, Alexandros Kapravelos, Nick Nikiforakis, and Adam
Doupé. 2019. Everyone is different: Client-side diversification for defending
against extension fingerprinting. In 28th USENIX Security Symposium (USENIX
Security 19). 1679–1696.

[41] Amber Van Der Heijden and Luca Allodi. 2019. Cognitive triaging of phishing
attacks. In 28th USENIX Security Symposium. 1309–1326.

[42] David Y Wang, Stefan Savage, and Geoffrey M Voelker. 2011. Cloak and dagger:
dynamics of web search cloaking. In Proceedings of the 18th ACM conference on
Computer and communications security. 477–490.

[43] WEBrate. 2022. Webrate.org - Rate the web. https://webrate.org/.
[44] Tech Blog (wh). 2012. Most Common User Agents. https://techblog.willshouse.

com/2012/01/03/most-common-user-agents/.
[45] Colin Whittaker, Brian Ryner, and Marria Nazif. 2010. Large-scale automatic

classification of phishing pages. (2010).
[46] Stephan Wiefling, Nils Gruschka, and Luigi Lo Iacono. 2019. Even Turing Should

Sometimes Not Be Able To Tell: Mimicking Humanoid Usage Behavior for Ex-
ploratory Studies of Online Services. In 24th Nordic Conference on Secure IT
Systems (NordSec 2019) (Aalborg, Denmark) (Lecture Notes in Computer Science,
Vol. 11875). Springer Nature, 188–203. https://doi.org/10.1007/978-3-030-35055-
0_12

[47] wordpress.org. 2022. WordPress Source Code. https://github.com/WordPress/
WordPress.

[48] BaoningWu and Brian D Davison. 2005. Cloaking and Redirection: A Preliminary
Study.. In AIRWeb. 7–16.

[49] Min Wu, Robert C Miller, and Greg Little. 2006. Web wallet: preventing phishing
attacks by revealing user intentions. In Proceedings of the second symposium on
Usable privacy and security. ACM, 102–113.

[50] Guang Xiang, Jason Hong, Carolyn P Rose, and Lorrie Cranor. 2011. Cantina+: A
feature-rich machine learning framework for detecting phishing web sites. ACM
Transactions on Information and System Security (TISSEC) 14, 2 (2011), 21.

[51] Haijun Zhang, Gang Liu, Tommy WS Chow, and Wenyin Liu. 2011. Textual and
visual content-based anti-phishing: a Bayesian approach. IEEE transactions on
neural networks 22, 10 (2011), 1532–1546.

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://github.com/DannyCork/python-whois
https://datadome.co/bot-management-protection/scraper-crawler-bots-how-to-protect-your-website-against-intensive-scraping/#2
https://datadome.co/bot-management-protection/scraper-crawler-bots-how-to-protect-your-website-against-intensive-scraping/#2
https://datadome.co/bot-management-protection/scraper-crawler-bots-how-to-protect-your-website-against-intensive-scraping/#2
https://transparencyreport.google.com/safe-browsing/overview?hl=en
https://transparencyreport.google.com/safe-browsing/overview?hl=en
https://github.com/MicrosoftDocs/windows-itpro-docs/blob/public/windows/security/threat-protection/windows-defender-smartscreen/windows-defender-smartscreen-overview.md
https://github.com/MicrosoftDocs/windows-itpro-docs/blob/public/windows/security/threat-protection/windows-defender-smartscreen/windows-defender-smartscreen-overview.md
https://github.com/MicrosoftDocs/windows-itpro-docs/blob/public/windows/security/threat-protection/windows-defender-smartscreen/windows-defender-smartscreen-overview.md
https://github.com/MicrosoftDocs/windows-itpro-docs/blob/public/windows/security/threat-protection/windows-defender-smartscreen/windows-defender-smartscreen-overview.md
https://github.com/danlopgom/phishing_kits
https://github.com/danlopgom/phishing_kits
https://www.privacypolicies.com/
https://www.privacypolicies.com/
https://www.radwarebotmanager.com/when-to-use-and-when-not-to-use-captcha/
https://www.radwarebotmanager.com/when-to-use-and-when-not-to-use-captcha/
https://www.first.org/resources/papers/valencia2017/shiver-foy_slides.pdf
https://www.first.org/resources/papers/valencia2017/shiver-foy_slides.pdf
https://www.cisco.com/c/en/us/products/security/talos.html
https://www.cisco.com/c/en/us/products/security/talos.html
https://github.com/treosh/exthouse
https://webrate.org/
https://techblog.willshouse.com/2012/01/03/most-common-user-agents/
https://techblog.willshouse.com/2012/01/03/most-common-user-agents/
https://doi.org/10.1007/978-3-030-35055-0_12
https://doi.org/10.1007/978-3-030-35055-0_12
https://github.com/WordPress/WordPress
https://github.com/WordPress/WordPress

I’m Spartacus, No, I’m Spartacus:

Proactively Protecting Users from Phishing by Intentionally Triggering Cloaking Behavior CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

[52] Penghui Zhang, Adam Oest, Haehyun Cho, Zhibo Sun, RC Johnson, Brad Ward-
man, Shaown Sarker, Alexandros Kpravelos, Tiffany Bao, Ruoyu Wang, Yan
Shoshitaishvili, Adam Doupé, and Gail-Joon Ahn. 2021. CrawlPhish: Large-scale
Analysis of Client-side Cloaking Techniques in Phishing. In Proceedings of the

42nd IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA.
[53] Yue Zhang, Jason I Hong, and Lorrie F Cranor. 2007. Cantina: a content-based

approach to detecting phishing web sites. In Proceedings of the 16th international
conference on World Wide Web. 639–648.

	Abstract
	1 Introduction
	2 Background
	3 Prevalence of Fingerprinting-based Cloaking
	4 Design
	4.1 Overview
	4.2 Visit Pre-filters
	4.3 Bot Profile Mutator
	4.4 Suspicious Content Classification

	5 Privacy
	5.1 Privacy Information
	5.2 Privacy Consent and Protection

	6 Evaluation
	6.1 Effectiveness
	6.2 Effectiveness of Trigger Words
	6.3 Effectiveness of Only User-Agent or Referrer
	6.4 Effectiveness of Proxy Server Option
	6.5 Efficiency and Latency
	6.6 Impact on Benign Web Sites

	7 Ecosystem Support
	8 Mitigating Server-side Cloaking
	9 Countermeasures to Spartacus
	9.1 Using Other Cloaking Techniques
	9.2 Emerging Phishing Based on Spartacus

	10 Limitations
	10.1 Spartacus Design
	10.2 Spartacus Deployment and Evaluation

	11 Related Work
	12 Conclusion
	Acknowledgments
	References

