
TrustZone Explained: Architectural Features and Use
Cases

Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho and Sarah Martin
Arizona State University

{bngabonz, dlmart11, anna.bailey, hcho67, sarahmartin}@asu.edu

Abstract—ARM TrustZone is a hardware security extension
technology, which aims to provide secure execution environment
by splitting computer resources between two execution worlds,
namely normal world and secure world. TrustZone is supported
on different flavors of ARM architectures, that include archi-
tecture deployed on targets running regular applications, such
as mobile devices and architecture for micro-controllers. As
ARM is widely deployed on the majority of mobile and micro-
controller devices, TrustZone’s goal is to provide security for
those platforms. In this paper, we will discuss details of different
ARM architectures that support TrustZone technology. Then, we
will review how TrustZone is implemented in the hardware and
software of ARM products. We will also compare TrustZone with
other implementations of trusted execution environments on the
market.

I. INTRODUCTION

Mobile devices have significantly changed the landscape
of computing in recent years by continuously introducing new
hardware and software features that were unimaginable before.
Since early 2014, the Internet usage on mobile devices has
exceeded the usage from PC [1]. A system is usually only
secured at the software level. However, a greater level of
security can be achieved by building security checks into the
hardware of the system. This idea is implemented by the
concept of Trusted Execution Environments (TEE).

A widely accepted industry standard of what a TEE is has
been defined by GlobalPlatform, as per the GlobalPlatform
Compliance Program. It states that “the TEE is a secure area
of the main processor” of a device. It must “offer isolated safe
execution of authorized security software” [2]. In addition,
it should be able to have applications in the areas of user
authentication, trusted processing and isolation, transaction
validation, usage of secure resources, and certification. TEEs
can also be used to protect digital content such as streamed
videos from being stolen by keeping all related applications to
the secured area of the processor.

In this paper we overview the TrustZone technology on
different ARM architectures and discuss the trend of using
TrustZone.

II. ARM ARCHITECTURE OVERVIEW

The ARM architecture is a Reduced Instruction Set Com-
puter (RISC) architecture. To date, 8 versions of ARM archi-
tectures have been defined, namely ARMv1 through ARMv8.
The most popular CPUs in the market now use either the
ARMv7 (32-bit, i.e. Cortex-A8, Cortex-A9, Cortex-M4) or
ARMv8 (64-bit, i.e. Cortex-A53, Cortex-A57) architecture.

Each architecture version may have slightly different profiles.
For instance, ARMv7 architecture provides three different
profiles: i) ARMv7-A: traditional profile which supports a
Virtual Memory System Architecture (VMSA) built around
a Memory Management Unit (MMU); ii) ARMv7-R: a real-
time profile which supports a Protected Memory System
Architecture (PMSA) built around a Memory Protection Unit
(MPU); and iii) ARMv7-M: a microcontroller profile which
provides low-latency interrupt processing and implements a
variant of the ARMv7 PMSA.

The ARM architecture has the following features [3]: i) it
has a large uniform register file; ii) data-processing operations
only operate on registers, not directly on memory; iii) simple
addressing modes; iv) instructions that combine a shift with an
arithmetic and logical operation. For example, after the instruc-
tion (ADD R9, R5, R5, LSL #3) executes, R5 times 9
is assigned to R9; v) auto-increment and auto-decrement
addressing modes to optimize program loops. For instance,
after the instruction (LDR R0, [R1, R2, LSR #0x4]!)
executes, R0 is assigned with the value at the memory
address of R1 + (R2 LSR 0x4) and R1 is assigned
with R1 + (R2 LSR 0x4). The character ! indicates a
writeback to R1; vi) Load and Store Multiple instructions
to maximize data throughput. For example, the instruction
(STMFD SP!,{R0-R12, LR}) is used to store R0 to R12
and the return address in LR onto the stack and modify the
stack pointer accordingly in one instruction, whereas the in-
struction (LDMFD sp!,{R0-R12, PC}) can load registers
from the stack and return automatically by overwriting PC; vii)
conditional execution of many instructions to maximize execu-
tion throughput. Most instruction sets only allow branches to
be executed conditionally, but most ARM instructions contain
a condition field which determines whether the CPU will exe-
cute them. For example, the instruction (ADDEQ R0,R1,R2)
will only execute when the zero flag is set.

In the rest of this section, we discuss the detailed design
of ARMv7 and ARMv8 architectures by illustrating processor
modes, core registers, system registers, etc.

A. ARMv7-A Architecture

1) Processor Modes: As shown in Table I, an ARMv7
processor has up to 9 different modes depending on if optional
extensions have been implemented. The usr mode that has a
privilege level 0 is where user space programs run at. The
svc mode that has a privilege level 1 is where most parts
of kernel execute at. However, some kernel modules run at
special modes instead of svc. For example, when a data
abort exception happens, a processor switches to the abt

2016 IEEE 2nd International Conference on Collaboration and Internet Computing

978-1-5090-4607-2/16 $31.00 © 2016 IEEE

DOI 10.1109/CIC.2016.63

445

2016 IEEE 2nd International Conference on Collaboration and Internet Computing

978-1-5090-4607-2/16 $31.00 © 2016 IEEE

DOI 10.1109/CIC.2016.63

445

TABLE I: Processor Modes

Processor Abbr. ARMv7 ARMv8 Security
Mode Privilege Level Exception Level State
User usr PL0 EL0 Both
Supervisor svc PL1 EL1 Both
System sys PL1 PL1 Both
Abort abt PL1 EL1 Both
IRQ irq PL1 EL1 Both
FIQ fiq PL1 EL1 Both
Undefined und PL1 EL1 Both

Monitor† mon PL1 EL3 Secure only

Hyp‡ hyp PL2 EL2 Non-secure only
† only implemented with Virtualization Extensions.
‡ only implemented with Security Extensions.

mode automatically. The current processor mode is deter-
mined by the mode field (M) of the current program state
register (CPSR). Processor mode change can be triggered by
exceptions, such as the aforementioned data abort exception.
Or, privileged program can directly write CPSR by calling
a MSR CPSR_c, #imm instruction, where c stands for the
control field that includes processor mode bits and interrupt
mask bits.

2) Processor States: If the security extensions (also known
as TrustZone) are implemented, a processor has two security
states, namely the secure state (s) and the non-secure state
(ns). The distinction between the two states is orthogonal
to the mode protection based on privilege levels, except that
the mon mode is only available in the secure state and the
hyp mode that is implemented with virtualization extensions
only exists for the non-secure state. The current processor
state is determined by the least significant bit of the secure
configuration register (SCR) in the CP15 coprocessor. The
change of processor states will be discussed in Section III. In
the rest of this paper, we use the notation of <mode|state>
to represent a mode and state combination.

3) Core Registers: Table II compares the ARMv7 archi-
tecture core registers between the application level view and
system level view. From the application level perspective, an
ARMv7 processor has 14 general-purpose 32-bit registers (R0
to R14), a 32-bit program counter R15 also known as PC, and
a 32-bit application program state register (APSR). Two of the
14 general-purpose registers can be used for special purposes:
R13 also known as SP is usually used as the stack pointer;
R14 also known as LR is usually used to store return address.
APSR is an application level alias for CPSR, and it must be
only used to access condition flags.

From the system level view, these registers are arranged
into several banks, which means a register name is mapped to
a collection of different physical registers, governed by the
current processor mode. As shown in Table II, each mode
except the system mode of the processor has: i) its own
banked copy of stack pointer SP; ii) a register that holds a
preferred return address for the exception (a banked copy, such
as LR_mon, for LP1 modes or a special register ELR_hyp
for the hyp mode). Each mode except the usr and system
has a banked copy of saved program status register SPSR to
save the copy of CPSR made on exception entry. Saving the
value of CPSR in banked SPSR registers means the exception
handler can: i) immediately restore the CPSR on exception

return; ii) examine the value of CPSR when the exception was
taken, for example to determine the previous process mode
when the exception took place. In addition, the fiq mode has
banked copies of R8 to R12. For example, when a processor
is executing in the fiq mode, R0 refers to R0_usr, but R12
refers to R12_fiq instead of R12_usr.

Note that processor core registers and program status
registers are not banked between the secure state and non-
secure state. Therefore, a program can use registers to pass
parameters between states. Also, during a processor state
switch, a privileged program mostly running in <mon|s> will
save the old state’ register values and restores the new state’s
register values. We will discuss more of the state switch in
Section III.

4) Coprocessors and System Registers: The ARM archi-
tecture supports sixteen coprocessors, namely CP0 - CP15, in
which CP15 (System Control coprocessor) is reserved in the
architecture for the control and configuration of the processor
system. Hardware manufacturer can define other coprocessors
for their own purposes.

The system registers in CP15 are categorized in many
groups that include i) virtual memory control registers function
group (SCTLR, DACR, TTBR0, TTBR1, PRRR); ii) PL1 Fault
handling registers; iii) cache maintenance operations; iv) ad-
dress translation operations; v) security Extensions registers.
Given the special purpose of CP15 system registers, many
of them are banked between secure and non-secure states.
However, the registers that configures the global system status,
such as SCR, are not banked. Table III lists some CP15 system
registers that are used in this paper.

B. ARMv7-M and ARMv6-M Architectures

With ARMv7, ARM introduced architecture profiles for
micro-controller which only support Thumb instruction set.
ARMv6-M, which is a sub-set of ARMv7-M, targets ultra low
power processor, whereas ARMv7-M targets high performance
embedded micro-controllers.

1) Processor Modes: ARMv7-M provides two execution
modes (Thread mode and Handler mode). On reset, the process
enters in Thread mode. When and exception occurs, the CPU
switches to Handler mode. the Code for exception handling
runs in handler mode, which is a privilege mode. A return from
exception, can go back to the Thread mode. Note that Thread
mode may execute at a privilege or an unprivileged Level.
Contrary, ARMv6-M can either implement an unprivileged
execution or privileged one, but not both at the same time.

2) Cortex-M Registers: Cortex-M processor has 16 core
registers (R0 to R15), R0 to R12 are general-purpose registers.
It also provides a program counter R15 also known as PC, and
a special-purpose program status register (xPSR). R13 also
known as SP is usually used as the stack pointer. Cortex-
M also offers two banked registers for the stack pointer,
SP_main and SP_process. R14 also known as LR is
usually used to store return address. APSR an application level
program ptatus register used to access condition flags by the
application, IPSR is an exception level program status register
that holds the exception number, and EPSR, execution program
status register, has T-bit to indicate the Thumb execution state.

446446

TABLE II: ARMv7 & ARMv8 Core Registers

AArch32 AArch32 System Level View &\
Application
Level View

AArch32 Relationship To AArch64

usr svc sys abt irq fiq und mon\† hyp\‡
R0 R0_usr\X0 - - - - - - - -
R1 R1_usr\X1 - - - - - - - -
R2 R2_usr\X2 - - - - - - - -
R3 R3_usr\X3 - - - - - - - -
R4 R4_usr\X4 - - - - - - - -
R5 R5_usr\X5 - - - - - - - -
R6 R6_usr\X6 - - - - - - - -
R7 R7_usr\X7 - - - - - - - -
R8 R8_usr\X8 - - - - R8_fiq\X24 - - -
R9 (SB) R9_usr\X9 - - - - R9_fiq\X25 - - -
R10 R10_usr\X10 - - - - R10_fiq\X26 - - -
R11 R11_usr\X11 - - - - R11_fiq\X27 - - -
R12 (IP) R12_usr\X12 - - - - R12_fiq\X28 - - -
SP (R13) SP_usr\X13 SP_svc\X19 - SP_abt\X21 SP_irq\X17 SP_fiq\X29 SP_und\X23 SP_mon\N/A SP_hyp\X15
LR (R14) LR_usr\X14 LR_svc\X18 - LR_abt\X20 LR_irq\X16 LR_fiq\X30 LR_und\X22 LR_mon\N/A -
PC (R15) PC - - - - - - - -

APSR CPSR - - - - - - - -

N/A N/A
SPSR_svc
\SPSR_EL1

N/A SPSR_abt SPSR_irq SPSR_fiq SPSR_und
SPSR_mon
\SPSR_EL3

SPSR_hyp
\SPSR_EL2

N/A N/A N/A N/A N/A N/A N/A N/A N/A
ELR_hyp
\ELR_EL2

† only implemented with Security Extensions. ‡ only implemented with Virtualization Extensions. A cell filled with - means the user mode register is
used when referred. A cell filled with a register name means the register is banked. A cell filled with N/A means no register is available for this mode
or level view.

TABLE III: Some CP15 System Registers on ARMv7

Register Name Security State Remarks
VBAR Vector Base Address Register Banked in both states
MVBAR Monitor Vector Base Address Register Secure state, monitor mode
ISR Interrupt Status Register
SCR Secure Configuration Register NS bit Only with Security Extensions
TTBRx Translation Table Base Register (0), (1) Banked in both states
TTBCR Translation Table Base Control Register Banked in both states
DACR Domain Access Control Register
SCTLR System Control Register Banked in both states
NSACR Non-Secure Access Control Register Security Extensions
SDER Secure Debug Enable Register

C. ARMv8-A Architecture

1) Execution States: ARMv8 provides two states of ex-
ecution, AArch32 that uses 32-bit registers, also compatible
with ARMv7 architecture and AArch64 which uses 64-bit
registers, also having a 64-bit memory address space (virtual
and physical). Coprocessors’s registers are 32-bit wide for
both states.A 64-bit operating system can host both 32-bit
applications and 64-bit applications but a 32-bit OS only hosts
32-bit apps. Moreover, on a 64-bit OS, one application cannot
have mixed instructions (32-bit instructions mixed with 64-bit
ones). When running a 32-bit application on the top of a 64-
bit operating system and an interrupt occurs, the system must
change to AArch64 to handle the interrupt, the switch from
AArch32 can also be done through a Supervisor Call SVC.
For both cases a return from an exception will cause a switch
back to AArch32.

2) Exception Levels: AArch64 adds a new exception level
EL3 (ARMv8 uses the term exception level, while ARMv7
uses the term privilege level but both means the same thing).

In ARMv8 we have four levels of privilege: EL0, EL1, EL2
and EL3. AArch64’s firmware and secure monitor run at EL3,
contrarily to ARMv7’s monitor mode which runs at PL1.
To ensure compatibility with ARMv7 when running a 32-
bit system (AArch32); all secure-world privileged levels are
at EL3. Otherwise, when the <mon|s> code is 64-bit, an
AArch32 code doesn’t have access to EL3 but can run at both
EL1 and EL0

3) Core Registers: An ARMv7 processor has 31 general-
purpose registers (X0 to X30). Table II also compares registers
relationship between ARMv7 and ARMv8. From the table we
can see that there are no ARMv7’s monitor mode LR_mon
and SP_mon mapping to ARMv8; that is because for ARMv8,
monitor mode only exists in the 64-bit execution state and is
at a level of privilege, EL3, which does not exist in ARMv7.
The equivalents of stack point and link register for ARMv8 are
SP_EL3 and ELR_EL3 respectively, which are not general
purpose registers, but special registers for EL3.

447447

III. TRUSTZONE: THE ARM SECURITY EXTENSIONS

As mentioned previously, TrustZone [4] is an optional
hardware security extension of the ARM processor architec-
ture, which includes bus fabric and system peripherals. The
security of TrustZone is based on the idea of partitioning
all of the System on Chip (SoC)’s hardware and software
into two worlds: secure world and normal world. The secure
world is everything runs when the processor state is secure,
and normal world is everything runs when the processor is
in the non-secure state. Hardware barriers are established to
prevent normal world components from accessing secure world
resources; the secure world is not restricted. Specifically, the
memory system prevents the normal world from accessing
i) regions of the physical memory designated as secure; ii)
system controls that apply to the secure world; and iii) state
switching outside of a small number of approved mechanisms.

This partitioning may be physical and/or virtual. For in-
stance, a physical processor core is shared by the normal
and secure world in a time-sliced fashion, which gives both
worlds the illusion that it owns the processor. The secure
world enables the construction of an isolated programmable
environment that can run a wide range of security applications.

A. TrustZone Hardware Architecture: Processor and Others

ARM has implemented this split-environment processor
with various system IP additions. These unique components are
used to enforce security restrictions while preserving the low
power consumption and other advantages of ARM’s designs.
Some of the features are described in the specification for
ARM’s Advanced Microcontroller Bus Architecture version 3
(AMBA3).

The AMBA3 AXI to APB Bridge allows for secure com-
munication between a CPU and peripherals. The Advanced
eXtensble Interface (AXI) bus, which is the main system
bus, contains an active-high non-secure (NS) bit that indicates
whether a read/write operation is directed to secure or non-
secure memory. The Advanced Peripheral Bus (APB), whose
low bandwidth reduces power consumption, connects to the
AXI bus via a bridge. As the APB does not check for security
due to backward-compatibility concerns, the bridge checks for
appropriate permissions and blocks unauthorized requests.

Like the AXI to APB bridge, the Cache Controller also
looks for an NS bit. This bit is basically treated like a 33rd
address bit: the first 32 bits provide the location, and the NS bit
indicates which world it refers to. Since both worlds share the
same physical cache, the same location may have two distinct
addresses, requiring a controller to look up the correct location.
This also includes L2 cache and other smaller locations.

The Direct Memory Access (DMA) Controller is used to
transfer data to physical memory locations instead of devoting
processor cycles to this task. This controller, which uses AXI,
can handle Secure and Non-secure events simultaneously, with
full support for interrupts and peripherals. It prevents non-
secure access of secure memory.

The TrustZone Address Space Controller (TZASC) allows
dynamic classification of AXI slave memory-mapped devices
as secure or non-secure. Controlled by the secure world, the
TZASC allows partitioning of a single memory unit rather than

requiring separate secure and non-secure units. The TZASC
allows an arbitrary number of partitions to be created.

The TrustZone Memory Adapter (TZMA) allows division
of on-chip static memory into secure and non-secure halves.
The halves must be in multiples of 4 kB, and the total unit
cannot be larger than 2MB. The TZMA can be controlled using
the R0SIZE input signal.

The Generic Interrupt Controller (GIC) is a device that
handles secure and non-secure prioritized interrupts. It prevents
non-secure interrupts from unauthorized access. To prevent
denial-of-service attacks, the GIC only handles interrupts in
the lower half of the priority hierarchy.

Finally, the TrustZone Protection Controller (TZPC) is
a signal-control unit. It has three 2-bit registers to control
up to 8 signals; one of these registers, TZPCR0SIZE, can
communicate with the TZMA.

B. TrustZone Software Architecture

The TrustZone Hardware, where hardware extensions en-
force a separation of secure and non-secure software, is more
resource-efficient than the use of two separate processors. The
secure world can be implemented as a full-fledged operating
system, a software library, or somewhere in between. While
the library design is simple, it is only suitable for occasional
secure calls. Thus, the operating system model will be the
focus of this discussion.

When using TrustZone to implement concurrent secure
and non-secure operating systems, a general operating system,
such as Linux, Android, etc., would run in the normal world
and a security subsystem, such as OP-TEE or a customized
Linux [5], would run in the secure world. The functionality
of the device can be described in two scenarios: first, to
properly boot both operating systems; second, to provide a
proper communication framework between the two.

Securely booting both parts of this system is a key concern.
Without proper verification of both images, the device may
inadvertently boot a malicious version, giving attackers an
entry route. Therefore, ARM has designed TrustZone-enabled
systems to use a Secure Boot Sequence. To build a chain
of trust, each step can be cryptographically verified, usually
starting with a vendor-specific public key. One-Time Pro-
grammable (OTP) techniques can be used to generate unique
keys for each part of the device. As a first step, a ROM-based
bootloader initializes important peripherals, such as memory
units. Next, the secure world is allowed to boot from a flash
device; if the CP15SDISABLE register has been cleared by
the ROM initially, the secure world will set it after modifying
its settings. This value locks the configuration of the secure
world, such that the settings are made immutable until the
next reboot.

Once the device has finished booting, the two operat-
ing systems can communicate with each other through the
“monitor” kernel mode, which acts like an ordinary context
switch. Normal world software can only enter this mode
by using a hardware interrupt, an external abort signal, or
the software instruction SMC. The hardware interrupts and
aborts are asynchronous and only support a full world switch,
while SMC also supports message passing without a complete

448448

Fig. 1: TrustZone on ARM Cortex-A

changeover. Secure world software can use these methods,
or write directly to the CPSR. Monitor mode executes with
interrupts disabled due to volatility concerns. In processors
that include VFP and NEON hardware units, ”lazy” context
switching is supported to reduce overhead.

ARM has made specific recommendations for using in-
terrupts in context switches. IRQ is the recommended source
for the Normal world, while FIQ is recommended for the
secure world. The Secure Control Register (SCR) indicates
which signal to watch for. If core is already in the correct
world, the signal is discarded; else, the hardware will enter
monitor mode. To prevent tampering with this convention, FIQ
is controlled by bits in the CPSR, which can only be modified
by secure world software. There are no such restrictions on
the use of IRQ. There are three vector tables for interrupt
handling: secure world, normal world, and monitor mode. In
multiprocessor systems, the secure world can either run on
all processors, or restrict itself to one core. If it is restricted,
then only the normal world on the shared core should have the
capability to switch to the secure world; all other cores will
ignore such signals, and can use the FIQ for other purposes.

To facilitate usage of the TrustZone software at an appli-
cation level, ARM has also introduced public specifications
for a TrustZone API (TZAPI). TZAPI is primarily concerned
with establishing a standard interface for sending information
to and from the secure world, regardless of the style of secure-
world implementation. It also makes use of the idea of ”World-
shared” memory for increased efficiency.

C. ARMv8-M TrustZone

ARMv8-M integrates TrustZone technology into cortex-
M. Also like ARMv7-M, ARMv8-M comes in two profile
too, ARMv8-M Baseline and ARMv8-M Mainline; similar
to ARMv6-M and ARMv7-M respectively, but with some
important enhancements. Like for cortex-A TrustZone is an
optional hardware security extension on an ARMv8-M proces-
sor; which provides additional security states, Secure World
and Normal World, with Secure World able to access all

Fig. 2: TrustZone on ARM Cortex-M

resources, but Normal World only accessing resources it has
been allocated to. Also on cortex-M, TrustZone secure and
non-secure states are orthogonal to Thread and Handler modes
mentioned previously, but Unlike cortex-A, any ARMv8-M’s
mode (thread or handler) can be privilege or unprivileged.

ARMv8-M TrustZone doesn’t provide monitor mode,
which improves interrupt latency, there is no need to go
through an additional transitional mode. As mentioned pre-
viously, Cortex-A’s security state is determined by the value
of the NS-bit on the secure configuration register. However, the
process security state on ARMv8-M is determined by weather
the code being executed resides in a secure memory or a
non-secure one. ARMv8-M TrustZone’s security state changes
when the execution switches to the code in a memory region
which belongs to a different security domain. This means
non-secure applications can directly call secure applications
(running in thread or handler mode), and vice-versa.

IV. COMPARING TRUSTZONE WITH OTHER

HARDWARE-BASED SECURITY SOLUTIONS

TrustZone can be compared to other TEE technologies
using GlobalPlatform’s standards. In addition, Sabat et al. [6]
provide several categories of criteria for comparison: func-
tional, security, and deployability. Functional criteria include
Protected Execution, Sealed Storage, Protected Input, Pro-
tected Output, and Attestation. Overall, these criteria measure
the physical protection of the data through the entire usage
cycle: receipt, input, processing, output, and validation. Secu-
rity criteria include Data Separation, Information Flow Control,
Sanitization, Damage Limitation. This category focuses more
on the mechanisms to avoid specific attacks on the system.
Finally, Deployability criteria measure the barriers to adoption;
these include Support of Legacy Systems, Cost, Overhead, and
SEE Performance. As there is some overlapping between the
Functional and Security criteria, we will attempt to focus on
salient points.

449449

A. Comparing TrustZone to Secure Element/TPM

According to Global Platform, a secure Element is a
tamper-resistant separate platform, in which secure applica-
tions and their cryptographic data are stored. Compared to
TrustZone, a secure element has less computational capability
as it run on separate hardware and does not have access to main
system’s cpus. TrustZone’s trusted execution environment runs
on the same cpu as the rich operating system.

On the other hand a secure element guarantees a higher
level of security by providing a secure key storage and a root
of trust. TrustZone doesn’t provide security for non-volatile
storage and lacks a guaranteed root of trusts.

While Trustzone and secure element are mainly used
for Mobile devices, Trusted Platform Modules are mainly
deployed on Notebook PCs. Same as secure element, TPMs
provide a root of trust for cryptographic key storage, also has
low performance due to a slow cpu bus and doesn’t leverage
the main CPU. Moreover, secure element and TPM can be
integrated with to TrustZone, thus providing a root of trust
and bootstrap trust.

B. Intel TXT and SGX

Intel Trusted Execution Technology (TXT) is a virtual
machine protection mechanism through a combination of hard-
ware extensions to CPU and supporting software. Hardware
extensions compromise virtual machine extension (VMX),
which permits to create separate guests virtual machine (VM),
and safer machine extension (SMX), responsible for the mea-
surement of virtual machine monitor.

Intel TXT protect physical page of a virtual machine
from being accessed by other virtual machines. In addition,
it ensures secure communication between I/O devices and the
protected virtual machine.

Intel TXT [7] is designed to rely on TPM and provide
a trusted way to load and execute system software, such as
operating system or virtual machine monitor. TPM allow Intel
TXT to provide protection for long-term storage. However,
this also leads to a greater reliance on the manufacturer’s
trustworthiness than with TrustZone. Such reliance can be
problematic [8].

Both Intel TXT and TrustZone provide the ability to
run trusted and untrusted Operating System side by side by
partitioning memory between them; this can result in a scarcity
of resources, especially for the trusted execution environment.

Intel Software Guard eXtension (SGX) is a hardware
extension on Intel CPU’s which enables the creation of secure
container for data and code using that data. Both trusted and
and untrusted execution have access to all system resource
which provide security and high performance at same time.

C. TI M-Shield and AMD

An interesting issue to note is that TrustZone has been
adopted by other manufacturers. While Intel pursues SGX,
AMD and Texas Instruments have both decided to integrate
TrustZone technology in their products. AMD uses TrustZone
in its 64-bit Advanced Processing Units(APU’s). TI integrated
TrustZone into its M-Shield Security framework used in the
OMAP2 and OMAP3 processors [9].

D. Compare TrustZone to Virtualization

Machine virtualization, using hypervisor, is a full system
virtualization of all hardware resource which include memory,
cpu, devices and also entire ISA(Instruction Set Architecture.
The hypervisor multiplex access to real resources between
various virtual machine. TrustZone only multiplex cpu between
a normal world and secure through the monitor mode; other
resources such as memory are physically split among them.
TrustZone can be used as a virtualization tool, capable only of
hosting two operating system, in this the monitor mode process
will server as a virtual machine monitor (VMM).

Both Hypervisor and TrustZone can be used for out of
VM kernel monitoring. For this use, secure world and the Hy-
pervisor introspect normal world and hosted VM respectively.
The main difference between TrustZone kernel monitoring and
Hypervisor VM monitoring is that the hypervisor run at the
same level of privilege as the hosting machine. If there is a bug
in the hypervisor the hosted can exploit, the hosting machine
would also be compromise, contrary to Trustzone where the
monitoring code runs in a isolated environment (secure world)
and even a normal world is unsafe, it still has no access to
code running in secure world.

E. Evaluation of TrustZone

The trust of a computation system is usually bootstrapped
from some foundational root of trust, that is typically the
secrecy of a private key [10, 11]. And, the secrecy of such a
private key is guaranteed by some physical features of the em-
bedded devices. Even though being marketed as ‘TrustZone’,
this technology does not directly provide secure key storage.
Therefore, it does not provide any kind of root of trust but just
a system-wide isolation of two execution environments. As a
result, another physical device has to be introduced to work
with TrustZone to provide a root of trust and bootstrap trust.
With hardware-based TPM or MTM, trust can be bootstrapped
from the hardward roots of trust. However, TrustZone itself
does not provide such hardware roots of trust [5].

V. RESEARCH PROJECTS THAT USE TRUSTZONE

A DACR-based approach, namely ARMLock [12], was
proposed to isolate untrusted modules in one host application.
ARMLock supports up-to 13 simultaneously running domains
for each process, since Linux uses domain 0, 1, and 2 for the
kernel, user-space, and, device memory respectively. ARM-
Lock assigns unique domain IDs to untrusted modules, and
updates DACR when entering and leaving a sandbox so that
the untrusted code can only access the current running domain.
System calls are devised for cross-domain communications. In
ARMLock, the kernel is trusted.

TrustZone is also used to simulate virtualization tech-
niques. Pinto et al. [13] proposed to run a general purpose OS
in the normal world and a real-time OS in the secure world.
They designed the VMM to run in the monitor mode. They
assigned FIQ to secure world and IRQ to normal world. They
did not explain how to prevent the secure world from accessing
the normal world. In their design, either OS can not preempt
the other OS. So starvation is normal if one of the OSes does
not yield its control of CPU.

450450

TrustZone provides the privileged smc instruction to
switch processor state from normal world to secure world, and
vice versa. Therefore, any normal world code in a privileged
mode can call smc, and secure world monitor will be triggered.
To control this access, SeCRet [14] proposed authentication of
normal world processes.

In the application area, TEE’s can be used as part of a
multi-factor authentication protocol. Such protocols, such as
Oauth and FIDO, allow users to authenticate themselves using
an additional device besides a standard text password. TPM
has already been used in the OpenID protocol [15]. However,
TrustZone allows for faster adoption due to the popularity
of ARM-platform smartphones and other mobile devices; any
sensitive data like encryption keys can be handled by the secure
world. As a member of the FIDO Alliance, ARM has issued a
whitepaper with a suggested architecture of the FIDO protocol
using TrustZone [16], but a real-life implementation has not
been constructed to date.

VI. CONCLUSION

Overall, one can see that ARM’s TrustZone is a viable
implementation of the Trusted Execution Environment. ARM
has provided both hardware and software mechanisms to
enforce the separation of secure and unsecure data. The
hardware controllers provide an acceptable level of backward
compatibility, and try to avoid excessive reductions in latency.
The software architecture allows flexibility: the secure world
can be a slave process, a full operating system, or somewhere
in between. The full operating system model, at least in single-
core machines, is well implemented. Compared to the TPM
approach, espoused by Intel, TrustZone is more economical
with hardware, and avoids the scenario of an all-powerful
“black box” being the ultimate controller of the system. While
TrustZone does not allow as much control over peripherals as
a hypervisor, it has less of an attack surface.

ACKNOWLEDGMENT

This work was supported in part by grants from the
Center for Cybersecurity and Digital Forensics at Arizona State
University.

REFERENCES

[1] Rebecca Murtagh. Mobile now exceeds pc:
The biggest shift since the internet began.
http://searchenginewatch.com/sew/opinion/2353616/mobile-
now-exceeds-pc-the-biggest-shift-since-the-internet-
began, 2014.

[2] GlobalPlatform. GlobalPlatform made simple
guide: Trusted Execution Environment (TEE) Guide.
http://www.globalplatform.org/mediaguidetee.asp, 2016.

[3] Arm architecture reference manual: Armv7-a and armv7-
r edition. 2012.

[4] Arm security technology building a secure system using
trustzone technology. 2009.

[5] Johannes Winter. Trusted computing building blocks
for embedded linux-based arm trustzone platforms. In
Proceedings of the 3rd ACM workshop on Scalable
trusted computing, pages 21–30. ACM, 2008.

[6] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid
Bouabdallah. The dual-execution-environment approach:
Analysis and comparative evaluation. In ICT Systems Se-
curity and Privacy Protection, pages 557–570. Springer,
2015.

[7] David Grawrock. The intel safer computing initiative,
2005.

[8] Joanna Rutkowska. Intel x86 considered harmful. Tech-
nical report, Invisible Things Lab, 2015.

[9] Jerome Azema and Gilles Fayad. M-Shield Mobile
Security Technology: making wireless secure. Technical
report, Texas Instruments Incorporated, 2008.

[10] Bryan Parno, Jonathan M McCune, and Adrian Perrig.
Bootstrapping trust in commodity computers. In Security
and Privacy (SP), 2010 IEEE Symposium on, pages 414–
429. IEEE, 2010.

[11] Bryan Parno, Jonathan M McCune, and Adrian Perrig.
Bootstrapping Trust in Modern Computers, volume 10.
Springer, 2011.

[12] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang.
Armlock: Hardware-based fault isolation for arm. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 558–569.
ACM, 2014.

[13] Sandro Pinto, Daniel Oliveira, Jorge Pereira, Nuno Car-
doso, Mongkol Ekpanyapong, Jorge Cabral, and Adriano
Tavares. Towards a lightweight embedded virtualiza-
tion architecture exploiting arm trustzone. In Emerging
Technology and Factory Automation (ETFA), 2014 IEEE,
pages 1–4. IEEE, 2014.

[14] Jinsoo Jang, Sunjune Kong, Minsu Kim, Daegyeong Kim,
and Brent Byunghoon Kang. Secret: Secure channel be-
tween rich execution environment and trusted execution
environment. In Proceedings of NDSS, 2015.

[15] Andreas Leicher, Andreas U. Schmidt, Yogendra Shah,
and Inhyok Cha. Trusted Computing Enhanced OpenID.
In 2011 International Conference on Internet Technology
and Secured Transactions (ICITST), pages 1–8, 2010.

[16] Rob Coombs. Securing the Future of Authentication with
ARM TrustZone-based Trusted Execution Environment
and Fast Identity Online (FIDO). Technical report, ARM
Limited, 2015.

451451

